15.7withScannedExamples

15.7withScannedExamples - 15.7 / 15.8: TRIPLE INTEGRALS IN...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 15.7 / 15.8: TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICIAL COORDINATES KIAM HEONG KWA 1. TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES For a continuous function f on a bounded solid region E = {QM/,2) E R3l(x,y) 6 D,U1(rv,y) S 2 S u2(x,y)} of type 1 in the three-dimensional Euclidean space that projects onto a plane region D given in polar coordinates by D = {(739) 6 WM 3 6 s fi,h1(0)s r 3 152(6)}, where 0 S ,8 — oz < 27r and h1(6) and h2(0) are continuous functions, it may be easier to evaluate the integral // E f(a:,y,z>dv = //D [ f(m,y,z)dz in terms of cylindrical coordinates. dA Recall that the cylindrical coordinates (r, 0, z) of a point are related to its rectangular coordinates (:r, y, 2) by the relations at = r0036, y: rsinfi, z = 2. In these coordinates, (1.1) fl hz (0) uz (1* cos 0,1" sin 0) f(m,y,z)dV=/ / / f(rcos0,rsin6)rdzdrd0. E a h1(0) u1(r cos 0,1“ sin 0) 2. TRIPLE INTEGRALS IN SPHERICAL COORDINATES For a continuous function f on a spherical wedge, i.e., a solid region of the form E={(p,0,¢) 6R3Ia3p3b,6l 36361451 @952}, Date: October 16, 2010. 2 KIAM HEONG KWA whereOS as b, 03 02—01 < 27r, 0 S ¢2—¢1 <7r, and (p,¢9,¢) are the spherical coordinates related to the rectangular coordinates by the relations a: = psin¢cos9, y = psingbsinfi, z = pcosqb,‘ it can be shown that (2.1) f(:c,y,z) dV ¢2 92 b =/ / / f(psin¢>cos0,psinqt>sint9,pcosqfi)p2 sinqbddedqb. 451 91 a It should be noted that though we have defined triple integrals by dividing solids into small rectangular boxes, the same result can be achieved by dividing a solid into small spherical wedges. This follows from a more general theory that we shall discuss in the next section. To see how triple integrals can be defined in spherical coordinates directly, interested readers are referred to p. 1007 of the text. 89: \5. 3}: Triple InfimQ-P fin Qfih‘ad‘d CKQ CcmdiMd-es Rye-52‘ 13.: W “ " S’PR‘Ww' QWTMAU _______fl-,4:’>‘r — . (51;. )9 GW E L: mam m Me‘Rffi’ 90 Gwen EismkcseA — We Wm {40 owl 21-. x+ofl+a-__ '(W mghflSWs XZHO 2:24, DNA, : —er~’—°L¢—,——g_——~-~—~— - . 19. 7(JQ5C‘ AIDA I'A- / . ,w e flefifi gm! A I-fllh“? —— Cr C‘59)?4' CrmwiCrghg’S’ y ll I m w W * II x - E D~ F: i=0 _2__ 3:" g r((§bB+5(“e +5 ‘ U I! ! fi4< 'I n "I u I - I ‘ \ /6'?~ 7 m“ _ V ‘ 7 901 PM {Me Vasle 3’?“ fig 32.2215! E 7 f“ = «gorse ' 4M9!“ ‘(fs er’V/f. 96W ( \mém/ 7 Xl—lcjafi 01M, Jib? 509394 = 7:0?“ ?> 9) b :4 4c: —— 1 €1.55 ' I d“ l . 24 C00 PM! ‘A/K vbtm a? MRS‘MA E 5 ‘ rater ; ' /" /5Fr" MOW {\= Cuts an. #3 :__I (=0 we 9mm a 0+ < me = _1-| a 1 Ill “X 4 A w = (F 03’?” PM?" A I I v . “1-:O Xc~ : F A —- 5 ° W wmdwawwm A- E III NM acm— .. ' ‘ :3 .g :0 .l f ":0 15.2.1 Echbe‘mw weaves #2 VCS)‘: d m w =4 m mm me =. l ' __ J. Skg 5° 2 V l as w. , m 9e OA~UAQ g-gian«g I! ME , . 27F + v 8‘ = .— rsmms e m ' rammed ~— ‘— a— 0 [9(8'0 final ‘Um? d skifli 8+ [tea W's Mspkam K14? L-E Elt“: AW": Wu: x. 49km?) _ :2 m5 Edd -éh42 Cam i—tJ x24 'L . '. ‘flkfiw-l I‘m—I .— ’1 "' 751': q' I ...
View Full Document

Page1 / 6

15.7withScannedExamples - 15.7 / 15.8: TRIPLE INTEGRALS IN...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online