This preview shows page 1. Sign up to view the full content.
Unformatted text preview: 33. (a) When the string (ﬁxed at both ends) is vibrating at its lowest resonant frequency, exactly onehalf of a wavelength ﬁts between the ends. Thus, λ = 2L. We obtain v = f λ = 2Lf =
2(0.220 m)(920 Hz) = 405 m/s.
(b) The wave speed is given by v = τ /µ, where τ is the tension in the string and µ is the linear
mass density of the string. If M is the mass of the (uniform) string, then µ = M/L. Thus
τ = µv 2 = (M/L)v 2 = (800 × 10−6 kg)/(0.220 m) (405 m/s)2 = 596 N.
(c) The wavelength is λ = 2L = 2(0.220 m) = 0.440 m.
(d) The frequency of the sound wave in air is the same as the frequency of oscillation of the string.
The wavelength is diﬀerent because the wave speed is diﬀerent. If va is the speed of sound in air
the wavelength in air is λa = va /f = (343 m/s)/(920 Hz) = 0.373 m. ...
View Full
Document
 Fall '08
 SPRUNGER
 Physics

Click to edit the document details