P18_033 - 33. (a) When the string (fixed at both ends) is...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 33. (a) When the string (fixed at both ends) is vibrating at its lowest resonant frequency, exactly onehalf of a wavelength fits between the ends. Thus, λ = 2L. We obtain v = f λ = 2Lf = 2(0.220 m)(920 Hz) = 405 m/s. (b) The wave speed is given by v = τ /µ, where τ is the tension in the string and µ is the linear mass density of the string. If M is the mass of the (uniform) string, then µ = M/L. Thus τ = µv 2 = (M/L)v 2 = (800 × 10−6 kg)/(0.220 m) (405 m/s)2 = 596 N. (c) The wavelength is λ = 2L = 2(0.220 m) = 0.440 m. (d) The frequency of the sound wave in air is the same as the frequency of oscillation of the string. The wavelength is different because the wave speed is different. If va is the speed of sound in air the wavelength in air is λa = va /f = (343 m/s)/(920 Hz) = 0.373 m. ...
View Full Document

Ask a homework question - tutors are online