P18_044 - 44(a The number of different ways of picking up...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 44. (a) The number of different ways of picking up a pair of tuning forks out of a set of five is 5!/(2!3!) = 10. For each of the pairs selected, there will be one beat frequency. If these frequencies are all different from each other, we get the maximum possible number of 10. (b) First, we note that the minimum number occurs when the frequencies of these forks, labeled 1 through 5, increase in equal increments: fn = f1 + n∆f , where n = 2, 3, 4, 5. Now, there are only 4 different beat frequencies: fbeat = n∆f , where n = 1, 2, 3, 4. ...
View Full Document

This note was uploaded on 11/12/2011 for the course PHYS 2001 taught by Professor Sprunger during the Fall '08 term at LSU.

Ask a homework question - tutors are online