P31_071 - 71. (a) We assume the current is changing at...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
71. (a) We assume the current is changing at (nonzero) rate di/dt and calculate the total emf across both coils. First consider the coil 1. The magnetic ±eld due to the current in that coil points to the right. The magnetic ±eld due to the current in coil 2 also points to the right. When the current increases, both ±elds increase and both changes in flux contribute emf’s in the same direction. Thus, the induced emf’s are E 1 = ( L 1 + M ) di dt and E 2 = ( L 2 + M ) di dt . Therefore, the total emf across both coils is E = E 1 + E 2 = ( L 1 + L 2 +2 M ) di dt which is exactly the emf that would be produced if the coils were replaced by a single coil with inductance L eq = L 1 + L 2 +2 M . (b) We imagine reversing the leads of coil 2 so the current enters at the back of coil rather than the
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online