Week 5 Lab (Math 241) - volume is 32 cubic feet and the...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
There is $320 available to fence in a rectangular garden. The fencing for the side of the garden facing the road costs $6 per foot and the fencing for the other three sides costs $2 per foot. Find the dimensions of the largest possible garden. a) Determine the objective and constraint equations. b) Express the quantity to be maximized as a function of x (or y). c) Find the optimal values of x and y. Consider an open rectangular box with a square base. Let x represent the dimension of the base and h represent the height of the box. Find the values of x and h for which the
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: volume is 32 cubic feet and the total surface area of the box is minimal. a) Determine the objective and constraint equations. b) Express the quantity to be minimized as a function of x (or h). c) Find the optimal values of x and h. • A canvas wind shelter has a back, two square sides, and a top. If 96 square feet of canvas is to be used, find the dimensions of the shelter for which the space inside the shelter (the volume) is maximized...
View Full Document

This note was uploaded on 11/10/2011 for the course MATH 511 taught by Professor Staff during the Spring '08 term at Washington State University .

Ask a homework question - tutors are online