mba 522 18 12-39 calculating standard error

mba 522 18 12-39 calculating standard error - Regression 1...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Calculating SSE, MSE, and Stanard Error of Estimate for Q 12-39. SUMMARY OUTPUT SSR SSE SST Regression Statistics Riders(Y) X - Xbar Y - Ybar (Yhat-Ybar)^2 (Y-Yhat)^2 (Y-Ybar)^2 Multiple R 0.8444714 15 15 -14 -29.14286 408 196 19.56767815 603.9394227647 20.8636836385 849.306122 R Square 0.713132 17 35 -12 -9.142857 109.71429 144 23.078418 443.710596317 142.1241173339 83.5918367 Adjusted R Square 0.6557584 38 81 9 36.857143 331.71429 81 59.9411865 249.5872104283 443.4736260924 1358.44898 Standard Error 14.413244 Excel gives the same standard error that the solution manual gives. 21 31 -8 -13.14286 105.14286 64 30.09989772 197.2047094742 0.8101841223 172.734694 Observations 7 see below for blue highlighted solutions from Excel for SSR, SSE, and SST down the blue column. 47 75 18 30.857143 555.42857 324 75.73951585 998.3488417131 0.5468836984 952.163265 31 30 2 -14.14286 -28.28571 4 47.653597 12.3252943421 311.6494870264 200.020408 ANOVA 34 42 5 -2.142857 -10.71429 25 52.91970678 77.0330896384 119.2399962674 4.59183673 df SS MS F ignificance F sum 203 309 1471 838 2582.149165 1038.70797818 3620.857
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Regression 1 2582.1492 2582.1492 12.42962 0.016819 mean 29 44.1429 Residual 5 1038.708 207.7416 SST = SSR + SSE = 3620.85714 Total 6 3620.8571 compute regression line: b1 (slope) = summation of column F divided by summation of column G. Coefficientstandard Err t Stat P-value Lower 95%Upper 95%Lower 95.0% Upper 95.0% b1 = 1.7553699 Intercept-6.762871 15.43252 -0.438222 0.6795112 -46.43343 32.907685 -46.43343 32.907685 1.7553699 0.4978972 3.5255667 0.016819 0.4754843 3.0352555 0.4754843 3.0352555 bo (intercept) = MSE= SSE/(n-2) 207.741596 bo =-6.762871 Standard Error of Estimate is: So, the regression line which estimates Y is: Yhat = -6.76 + 1.755*X 14.4132438 This is from equation 12.16. Compute Coefficient of Determination (r-squared) r^2 = SSR / SST = 0.713132 Compute Correlation Coefficient (r ) take square root of coefficient of determination r = 0.8445 miles (X) multiply Col D & E Col D squared Predicted Y (Y hat) miles (X)...
View Full Document

Ask a homework question - tutors are online