hw2 - MATH 145: HOMEWORK 2 ANDREW BERGET As before, do not...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
MATH 145: HOMEWORK 2 ANDREW BERGET As before, do not hand in [bracketed] problems. This homework is due on Wednesday January 20. Problem A. We toss a fair coin n times and get get h heads and t tails where h > t are fixed integers. Your goal in this problem is to prove that The probability that, as we toss the coin, the number of heads is always larger than the number of tails is equal to ( h - t ) / ( h + t ) . For example, if h = 3 and t = 2 then the sequences of tosses HHTHT satisfies our condition, but HTHHT does not since at the second toss the number of tails equals the number of heads. (1) A walk on the grid of points with integer coordinates that only uses steps that are north-east % or south-east is called a diagonal lattice path . How many diagonal lattice paths are there from (0 , 0) to ( u,v )? (This is essentially solving Problem 31 in your book.) You can check that your answer is correct by showing that the number of lattice paths from (0 , 0) to (2 , 2) is 1 and the number of such paths from (0
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/13/2011 for the course MATH 145 taught by Professor Peche during the Winter '07 term at UC Davis.

Ask a homework question - tutors are online