Binomial table

Binomial table - fair coin? Because the proportion of...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Binomial table Because probabilities of binomial variables are so common in statistics, tables are used to alleviate  having to continually use the formula. Refer to Table 1 in "Statistics Tables," and you will find that  given  n =  10,  x =  5, and   = 0.5, the probability is 0.2461.  π Mean and standard deviation The mean of the binomial probability distribution is determined by the following formula:  μ =  n   π where   is the proportion of favorable outcomes and  π n  is the number of events.  The standard deviation of the binomial probability distribution is determined by this formula:  Example 2 What is the mean and standard deviation for a binomial probability distribution for ten coin flips of a 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: fair coin? Because the proportion of favorable outcomes of a fair coin falling heads (or tails) is = 0.5, simply π substitute into the formulas: The probability distribution for the number of favorable outcomes is shown in Figure 1. Note that this distribution appears to display symmetry. Only a binomial distribution with = 0.5 will π be truly symmetric. All other binomial distribution will be skewed. Figure 1. The binomial probability distribution of the number of heads resulting from ten coin tosses....
View Full Document

This note was uploaded on 11/15/2011 for the course QMST 2333 taught by Professor Mendez during the Fall '08 term at Texas State.

Page1 / 2

Binomial table - fair coin? Because the proportion of...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online