For exampl2 - Figure 2 For example the amount of curve area...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
For example, 0.3413 of the curve falls between the mean and one standard deviation above the  mean, which means that about 34 percent of all the values of a normally distributed variable are  between the mean and one standard deviation above it. It also means that there is a 0.3413 chance  that a value drawn at random from the distribution will lie between these two points. Sections of the curve above and below the mean may be added together to find the probability of  obtaining a value within (plus or minus) a given number of standard deviations of the mean (see 
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Figure 2). For example, the amount of curve area between one standard deviation above the mean and one standard deviation below is 0.3413 + 0.3413 = 0.6826, which means that approximately 68.26 percent of the values lie in that range. Similarly, about 95 percent of the values lie within two standard deviations of the mean, and 99.7 percent of the values lie within three standard deviations. Figure 2. The normal curve and the area under the curve between units. σ...
View Full Document

This note was uploaded on 11/15/2011 for the course QMST 2333 taught by Professor Mendez during the Fall '08 term at Texas State.

Ask a homework question - tutors are online