Heuristic_Search_Part1

Heuristic_Search_Part1 - Heuristic (Informed) Search R&N:...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
1 Heuristic (Informed) Search R&N: Chap. 4, Sect. 4.1–3
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Search Algorithm # 2 S EARCH# 2 1. I NS ERT (init ial- nod e ,FRI NGE) 2 . Re pe at : a. I f  e m pt y(FRI NGE)  t h e n r e t ur n  f ailur e b . N REMO VE(FRI NGE) c . s S T AT E( N ) d . I f  GO AL? ( s )  t h e n r e t ur n  pat h  or  g oal s t at e e . For  e ve r y s t at e   s ’ in S UCCES S O RS ( s ) i. Cr e at e  a nod e   N’ as  a s uc c e s s or  of   N ii. I NS ERT ( N’ ,FRI NGE) Re c a ll tha t the  o rde ring o f FRING E de fine s  the   s e a rc h s tra te g y
Background image of page 2
3 Best-First Search It exploits  state description  to estimate how “good”  each search node is An  evaluation function  f maps each node N of the  search tree to a real number  f(N)   0  [Traditionally, f(N) is an estimated cost; so, the smaller f(N), the more  promising N] Best-first search  sorts the FRINGE in increasing f   [Arbitrary order is assumed among nodes with equal f]
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 Best-First Search It exploits  state description  to estimate how “good”  each search node is An  evaluation function  f maps each node N of the  search tree to a real number  f(N)   0  [Traditionally, f(N) is an estimated cost; so, the smaller f(N), the more  promising N] Best-first search  sorts the FRINGE in increasing f   [Random order is assumed among nodes with equal f] “Best” does not refer to the quality  of the generated path Best-first search does not generate  optimal paths in general  “Best” does not refer to the quality  of the generated path Best-first search does not generate  optimal paths in general 
Background image of page 4
5 Romania with step costs in km
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 Example
Background image of page 6
7 Example
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8 Example
Background image of page 8
9 Typically, f(N) estimates: either the  cost of a solution path through N Then f(N) = g(N) + h(N), where g(N) is the cost of the path from the initial node to N h(N) is an estimate of the cost of a path from N to a goal node or the  cost of a path from N to a goal node Then f(N) = h(N)           Greedy best-search But there are no limitations on f. Any function of your choice is  acceptable.  But will it help the search algorithm? How to construct f?
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Typically, f(N) estimates: either the  cost of a solution path through N Then f(N) = g(N) +  h(N) , where g(N) is the cost of the path from the initial node to N h(N) is an estimate of the cost of a path from N to a goal node or the  cost of a path from N to a goal node Then f(N) =  h(N) But there are no limitations on f. Any function of your choice is  acceptable.  But will it help the search algorithm? How to construct f?
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/15/2011 for the course CAP 4630 taught by Professor Staff during the Fall '08 term at FAU.

Page1 / 71

Heuristic_Search_Part1 - Heuristic (Informed) Search R&N:...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online