{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Physics 1 Problem Solutions 112

Physics 1 Problem Solutions 112 - 108 Chapt 12 Rotational...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
108 Chapt. 12 Rotational Dynamics 012 qmult 00860 1 1 5 easy memory: spherical shell rotational inertia 18. The rotational inertia of an infinitely thin spherical shell of mass M and radius r is: a) Mr 2 . b) Mr . c) 2 3 Mr . d) Mr 3 . e) 2 3 Mr 2 . 012 qmult 01050 1 4 1 easy thinking: rotational analogs 19. For rigid body rotation about a fixed axis, the rotational analogs of inertial mass ( m ), momentum ( vector P = mvectorv ), Newton’s 2nd law ( vector F = mvectora ), and translational kinetic energy ( KE = (1 / 2) mv 2 ) are, respectively: a) rotational inertia ( I ), angular momentum ( L = ), the rotational Newton’s 2nd law ( τ = ), and rotational kinetic energy ( KE = (1 / 2) 2 ). b) rotational inertia ( I ), the rotational Newton’s 2nd law ( τ = ), and angular momentum ( L = ). c) the rotational Newton’s 2nd law ( τ = ), angular momentum ( L = ), and rotational kinetic energy ( KE = (1 / 2) 2 ). d) mass ( m ), angular velocity ( ω ), the static Newton’s 2nd law (0 = 0), and rotational kinetic energy ( KE = (1 / 2) 2 ).
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}