{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Physics 1 Problem Solutions 112

Physics 1 Problem Solutions 112 - 108 Chapt 12 Rotational...

This preview shows page 1. Sign up to view the full content.

108 Chapt. 12 Rotational Dynamics 012 qmult 00860 1 1 5 easy memory: spherical shell rotational inertia 18. The rotational inertia of an infinitely thin spherical shell of mass M and radius r is: a) Mr 2 . b) Mr . c) 2 3 Mr . d) Mr 3 . e) 2 3 Mr 2 . 012 qmult 01050 1 4 1 easy thinking: rotational analogs 19. For rigid body rotation about a fixed axis, the rotational analogs of inertial mass ( m ), momentum ( vector P = mvectorv ), Newton’s 2nd law ( vector F = mvectora ), and translational kinetic energy ( KE = (1 / 2) mv 2 ) are, respectively: a) rotational inertia ( I ), angular momentum ( L = ), the rotational Newton’s 2nd law ( τ = ), and rotational kinetic energy ( KE = (1 / 2) 2 ). b) rotational inertia ( I ), the rotational Newton’s 2nd law ( τ = ), and angular momentum ( L = ). c) the rotational Newton’s 2nd law ( τ = ), angular momentum ( L = ), and rotational kinetic energy ( KE = (1 / 2) 2 ). d) mass ( m ), angular velocity ( ω ), the static Newton’s 2nd law (0 = 0), and rotational kinetic energy ( KE = (1 / 2) 2 ).
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}