{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

sol ass1

# sol ass1 - ANALYTICAL MECHANICS CIVE 281 Solution to...

This preview shows pages 1–4. Sign up to view the full content.

1 ANALYTICAL MECHANICS, CIVE 281 Solution to Assignment No. 1 1. The motion of a particle is defined by the position vector ( ( j i r t t t A t t t A cos sin sin cos - + + = , where t is expressed in seconds. Determine the values of t for which the position vector and the acceleration vector (a) perpendicular, (b) parallel. (B. & J. 11.93) Solution: Position vector, ( ( j i r t t t A t t t A cos sin sin cos - + + = Velocity vector, v r = dt d ( ( j i t t t t A t t t t A cos sin cos sin cos sin - + + + + - = ( ( j i t t A t t A sin cos + = Acceleration vector, ( 29 ( 29 j i a v t t t A t t t A dt d sin cos cos sin + + + - = = (a) For the position vector, r and acceleration vector, a to be perpendicular, 0 = a r Definition of dot product of two vectors z z y y x x B A B A B A + + = B A ( ( [ ] ( ( [ ] 0 sin cos cos sin cos sin sin cos = + + + - - + + j i j i t t t A t t t A t t t A t t t A O P y x P 0 A r Fig. P11.93

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 ( ( ( ( [ ] 0 sin cos cos sin cos sin sin cos 2 = + - + + - + t t t t t t t t t t t t A ( ( ( ( 0 sin cos cos sin cos sin sin cos = + - + + - + t t t t t t t t t t t t ( ( 0 cos sin sin cos cos sin cos sin cos sin cos sin 2 2 2 2 2 2 = - + - + + + - - t t t t t t t t t t t t t t t t t t 0 sin cos cos sin 2 2 2 2 2 2 = + - + - t t t t t t ( ( 0 cos 1 sin 1 2 2 2 2 = - + - t t t t ( ( 0 cos sin 1 2 2 2 = + - t t t Trigonometric pythagorean identity 1 cos sin 2 2 = + t t Therefore, 0 1 2 = - t 1 2 = t t = 1 s (b) For the position vector, r and acceleration vector, a to be perpendicular, 0 = × a r Definition of cross product of two vectors ( 29 ( 29 ( 29 x y y x z x x z y z z y z y x z y x B A B A ˆ B A B A ˆ B A B A ˆ B B B A A A ˆ ˆ ˆ - + - + - = = × k j i k j i B A ( ( [ ] ( ( [ ] 0 sin cos cos sin cos sin sin cos = + + + - × - + + j i j i t t t A t t t A t t t A t t t A ( ( ( ( [ ] 0 cos sin cos sin sin cos sin cos 2 2 = + - - - + + k ˆ t t t t t t A t t t t t t A ( [ ] 0 cos cos sin cos sin sin sin cos sin cos sin cos 2 2 2 2 2 2 2 = - + + - - + + + k ˆ t t t t t t t t t t t t t t t t t t A ( 0 cos 2 sin 2 2 2 = + k ˆ t t t t ( 0 cos sin 2 2 2 = + k ˆ t t t 0 2 = t t = 0
3 2. At a general time t, a particle has an acceleration ( k j i a ˆ t ˆ t ˆ e t 3 cos 6

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}