{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

optics

# optics - Optics Reflection Prisms Diffuse reflection...

This preview shows pages 1–6. Sign up to view the full content.

Optics Reflection Diffuse reflection Refraction Index of refraction Speed of light Snell’s law Geometry problems Critical angle Total internal reflection Brewster angle Fiber optics Mirages Dispersion Prisms Rainbows Plane mirrors Spherical aberration Concave and convex mirrors Focal length & radius of curvature Mirror / lens equation Convex and concave lenses Human eye Chromatic aberration Telescopes Huygens’ principle Diffraction

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Reflection Most things we see are thanks to reflections, since most objects don’t produce their own visible light. Much of the light incident on an object is absorbed but some is reflected. the wavelengths of the reflected light determine the colors we see. When white light hits an apple, for instance, primarily red wavelengths are reflected, while much of the others are absorbed. A ray of light heading towards an object is called an incident ray . If it reflects off the object, it is called a reflected ray . A perpendicular line drawn at any point on a surface is called a normal (just like with normal force). The angle between the incident ray and normal is called the angle of incidence , i , and the angle between the reflected ray and the normal ray is called the angle of reflection , r . The law of reflection states that the angle of incidence is always equal to the angle of reflection.
Law of Reflection i r i = r Normal line (perpendicular to surface) inc i dent ra ys reflected rays

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Diffuse Reflection Diffuse reflection is when light bounces off a non-smooth surface. Each ray of light still obeys the law of reflection, but because the surface is not smooth, the normal can point in a different for every ray. If many light rays strike a non-smooth surface, they could be reflected in many different directions. This explains how we can see objects even when it seems the light shining upon it should not reflect in the direction of our eyes. It also helps to explain glare on wet roads: Water fills in and smoothes out the rough road surface so that the road becomes more like a mirror.
Speed of Light & Refraction As you have already learned, light is extremely fast, about 3 × 10 8 m/s in a vacuum. Light, however, is slowed down by the presence of matter. The extent to which this occurs depends on what the light is traveling through. Light travels at about 3/4 of its vacuum speed (0.75 c ) in water and about 2/3 its vacuum speed (0.67 c ) in glass. The reason for this slowing is because when light strikes an atom it must interact with its electron cloud. If light travels from one medium to another, and if the speeds in these media differ, then light is subject to refraction (a changing of direction at the interface).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern