202s05mt2 - B U Department of Mathematics Math 202...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: B U Department of Mathematics Math 202 Differential Equations Spring 2005 Second Midterm This archive is a property of Bo˘gazi¸ ci University Mathematics Department. The purpose of this archive is to organise and centralise the distribution of the exam questions and their solutions. This archive is a non-profit service and it must remain so. Do not let anyone sell and do not buy this archive, or any portion of it. Reproduction or distribution of this archive, or any portion of it, without non-profit purpose may result in severe civil and criminal penalties. 1. Use variation of parameters to find the general solution to x 2 y 00 + 3 xy + y = 1 x for x > . Solution: The corresponding homogenous equation x 2 y 00 + 3 xy + y = 0 is Euler’s equation. The indicial equation is r 2 + (3- 1) r + 1 = r 2 + 2 r + 1 = ( r + 1) 2 = 0 . So we have equal roots r 1 = r 2 =- 1. Hence, y 1 ( x ) = x- 1 , y 2 ( x ) = x- 1 ln x form a fundamental set of solutions. Now by variation of parameters, we assume y ( x ) = c 1 ( x ) y 1 + c 2 ( x ) y 2 is a particular solution. We insert y in the given differential equation. Assuming, as usual, that c 1 y 1 + c 2 y 2 = 0 we obtain as the second identity: x 2 ( c 1 y 1 + c 2 y 2 ) = 1 x ; that is, we get: y 1 y 2 y 1 y 2 c 1 c 2 = x...
View Full Document

{[ snackBarMessage ]}

Page1 / 4

202s05mt2 - B U Department of Mathematics Math 202...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online