Introduction to Methods of Applied Mathematics Advanced Mathematical Methods for Scientists and Engi

This preview shows page 1 out of 2300 pages.

Unformatted text preview: Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers Sean Mauch April 8, 2002 Contents Anti-Copyright xxiii Preface 0.1 Advice to Teachers . . . . 0.2 Acknowledgments . . . . 0.3 Warnings and Disclaimers 0.4 Suggested Use . . . . . . 0.5 About the Title . . . . . xxiv xxiv xxiv xxv xxvi xxvi I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Algebra 1 Sets 1.1 1.2 1.3 1.4 1.5 1.6 1.7 and Functions Sets . . . . . . . . . . . . . . . . . Single Valued Functions . . . . . . . Inverses and Multi-Valued Functions . Transforming Equations . . . . . . . Exercises . . . . . . . . . . . . . . . Hints . . . . . . . . . . . . . . . . . Solutions . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 5 9 11 15 16 2 Vectors 2.1 Vectors . . . . . . . . . . . . . . . . . . 2.1.1 Scalars and Vectors . . . . . . . 2.1.2 The Kronecker Delta and Einstein 2.1.3 The Dot and Cross Product . . . 2.2 Sets of Vectors in n Dimensions . . . . . 2.3 Exercises . . . . . . . . . . . . . . . . . 2.4 Hints . . . . . . . . . . . . . . . . . . . 2.5 Solutions . . . . . . . . . . . . . . . . . II . . . . . . . . . . . . . . . . . . . . . . . . . . Summation Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calculus 3 Differential Calculus 3.1 Limits of Functions . . . . . . . . . . . . . . . 3.2 Continuous Functions . . . . . . . . . . . . . 3.3 The Derivative . . . . . . . . . . . . . . . . . 3.4 Implicit Differentiation . . . . . . . . . . . . . 3.5 Maxima and Minima . . . . . . . . . . . . . . 3.6 Mean Value Theorems . . . . . . . . . . . . . 3.6.1 Application: Using Taylor’s Theorem to 3.6.2 Application: Finite Difference Schemes 3.7 L’Hospital’s Rule . . . . . . . . . . . . . . . . 3.8 Exercises . . . . . . . . . . . . . . . . . . . . 3.9 Hints . . . . . . . . . . . . . . . . . . . . . . 3.10 Solutions . . . . . . . . . . . . . . . . . . . . 22 22 22 25 26 33 36 38 40 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Approximate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 47 52 54 59 61 64 66 71 73 79 85 91 4 Integral Calculus 111 4.1 The Indefinite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 ii 4.3 4.4 4.5 4.6 4.7 4.8 4.2.1 Definition . . . . . . 4.2.2 Properties . . . . . . The Fundamental Theorem of Techniques of Integration . . 4.4.1 Partial Fractions . . . Improper Integrals . . . . . . Exercises . . . . . . . . . . . Hints . . . . . . . . . . . . . Solutions . . . . . . . . . . . 5 Vector Calculus 5.1 Vector Functions . . 5.2 Gradient, Divergence 5.3 Exercises . . . . . . 5.4 Hints . . . . . . . . 5.5 Solutions . . . . . . III . . . . . and Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Integral Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 118 120 122 122 125 129 133 137 . . . . . 147 147 148 156 159 161 Functions of a Complex Variable 6 Complex Numbers 6.1 Complex Numbers . . . 6.2 The Complex Plane . . 6.3 Polar Form . . . . . . . 6.4 Arithmetic and Vectors 6.5 Integer Exponents . . . 6.6 Rational Exponents . . 6.7 Exercises . . . . . . . . 6.8 Hints . . . . . . . . . . 6.9 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 171 174 179 183 185 187 191 198 201 7 Functions of a Complex Variable 7.1 Curves and Regions . . . . . . . . . . . . 7.2 The Point at Infinity and the Stereographic 7.3 Cartesian and Modulus-Argument Form . . 7.4 Graphing Functions of a Complex Variable 7.5 Trigonometric Functions . . . . . . . . . . 7.6 Inverse Trigonometric Functions . . . . . . 7.7 Riemann Surfaces . . . . . . . . . . . . . 7.8 Branch Points . . . . . . . . . . . . . . . 7.9 Exercises . . . . . . . . . . . . . . . . . . 7.10 Hints . . . . . . . . . . . . . . . . . . . . 7.11 Solutions . . . . . . . . . . . . . . . . . . . . . . . . Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Analytic Functions 8.1 Complex Derivatives . . . . . . . . . . . . . . 8.2 Cauchy-Riemann Equations . . . . . . . . . . 8.3 Harmonic Functions . . . . . . . . . . . . . . 8.4 Singularities . . . . . . . . . . . . . . . . . . 8.4.1 Categorization of Singularities . . . . . 8.4.2 Isolated and Non-Isolated Singularities 8.5 Application: Potential Flow . . . . . . . . . . 8.6 Exercises . . . . . . . . . . . . . . . . . . . . 8.7 Hints . . . . . . . . . . . . . . . . . . . . . . 8.8 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Analytic Continuation 9.1 Analytic Continuation . . . . . . . . . . . . . . . . . 9.2 Analytic Continuation of Sums . . . . . . . . . . . . 9.3 Analytic Functions Defined in Terms of Real Variables 9.3.1 Polar Coordinates . . . . . . . . . . . . . . . iv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 228 231 233 237 239 245 254 256 273 284 289 . . . . . . . . . . 346 346 353 358 363 363 367 369 374 380 383 . . . . 419 419 422 424 429 9.4 9.5 9.6 9.3.2 Analytic Functions Exercises . . . . . . . . . Hints . . . . . . . . . . . Solutions . . . . . . . . . Defined in Terms of Their . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Real or Imaginary Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Contour Integration and the Cauchy-Goursat Theorem 10.1 Line Integrals . . . . . . . . . . . . . . . . . . . . . . . 10.2 Contour Integrals . . . . . . . . . . . . . . . . . . . . . 10.2.1 Maximum Modulus Integral Bound . . . . . . . 10.3 The Cauchy-Goursat Theorem . . . . . . . . . . . . . . 10.4 Contour Deformation . . . . . . . . . . . . . . . . . . 10.5 Morera’s Theorem. . . . . . . . . . . . . . . . . . . . . 10.6 Indefinite Integrals . . . . . . . . . . . . . . . . . . . . 10.7 Fundamental Theorem of Calculus via Primitives . . . . 10.7.1 Line Integrals and Primitives . . . . . . . . . . . 10.7.2 Contour Integrals . . . . . . . . . . . . . . . . 10.8 Fundamental Theorem of Calculus via Complex Calculus 10.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 10.10Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.11Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 11 Cauchy’s Integral Formula 11.1 Cauchy’s Integral Formula 11.2 The Argument Theorem . 11.3 Rouche’s Theorem . . . . 11.4 Exercises . . . . . . . . . 11.5 Hints . . . . . . . . . . . 11.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 436 438 439 . . . . . . . . . . . . . . 444 444 446 449 450 452 453 455 456 456 456 457 460 464 465 . . . . . . 475 476 483 484 487 491 493 12 Series and Convergence 12.1 Series of Constants . . . . . . . . . . . . . . . . . . . . 12.1.1 Definitions . . . . . . . . . . . . . . . . . . . . 12.1.2 Special Series . . . . . . . . . . . . . . . . . . 12.1.3 Convergence Tests . . . . . . . . . . . . . . . . 12.2 Uniform Convergence . . . . . . . . . . . . . . . . . . 12.2.1 Tests for Uniform Convergence . . . . . . . . . 12.2.2 Uniform Convergence and Continuous Functions. 12.3 Uniformly Convergent Power Series . . . . . . . . . . . 12.4 Integration and Differentiation of Power Series . . . . . 12.5 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . 12.5.1 Newton’s Binomial Formula. . . . . . . . . . . . 12.6 Laurent Series . . . . . . . . . . . . . . . . . . . . . . 12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 12.8 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.9 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 508 508 510 512 519 520 522 523 530 533 536 538 543 558 567 13 The Residue Theorem 13.1 The Residue Theorem . . . . . . . . . . . . 13.2 Cauchy Principal Value for Real Integrals . . 13.2.1 The Cauchy Principal Value . . . . . 13.3 Cauchy Principal Value for Contour Integrals 13.4 Integrals on the Real Axis . . . . . . . . . . 13.5 Fourier Integrals . . . . . . . . . . . . . . . 13.6 Fourier Cosine and Sine Integrals . . . . . . 13.7 Contour Integration and Branch Cuts . . . . 13.8 Exploiting Symmetry . . . . . . . . . . . . . 13.8.1 Wedge Contours . . . . . . . . . . . 13.8.2 Box Contours . . . . . . . . . . . . 13.9 Definite Integrals Involving Sine and Cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 614 622 622 627 631 635 637 640 643 643 646 647 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.10Infinite Sums 13.11Exercises . . 13.12Hints . . . . 13.13Solutions . . IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordinary Differential Equations 650 655 669 675 761 14 First Order Differential Equations 14.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.2 One Parameter Families of Functions . . . . . . . . . . . . . . 14.3 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . 14.3.1 Separable Equations . . . . . . . . . . . . . . . . . . . 14.3.2 Homogeneous Coefficient Equations . . . . . . . . . . . 14.4 The First Order, Linear Differential Equation . . . . . . . . . . 14.4.1 Homogeneous Equations . . . . . . . . . . . . . . . . . 14.4.2 Inhomogeneous Equations . . . . . . . . . . . . . . . . 14.4.3 Variation of Parameters. . . . . . . . . . . . . . . . . . 14.5 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.1 Piecewise Continuous Coefficients and Inhomogeneities . 14.6 Well-Posed Problems . . . . . . . . . . . . . . . . . . . . . . . 14.7 Equations in the Complex Plane . . . . . . . . . . . . . . . . . 14.7.1 Ordinary Points . . . . . . . . . . . . . . . . . . . . . 14.7.2 Regular Singular Points . . . . . . . . . . . . . . . . . 14.7.3 Irregular Singular Points . . . . . . . . . . . . . . . . . 14.7.4 The Point at Infinity . . . . . . . . . . . . . . . . . . . 14.8 Additional Exercises . . . . . . . . . . . . . . . . . . . . . . . 14.9 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.10Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 762 764 766 771 773 777 777 779 782 782 783 788 791 791 794 799 801 804 807 810 15 First Order Linear Systems of Differential Equations 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2 Using Eigenvalues and Eigenvectors to find Homogeneous Solutions 15.3 Matrices and Jordan Canonical Form . . . . . . . . . . . . . . . . 15.4 Using the Matrix Exponential . . . . . . . . . . . . . . . . . . . . 15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.6 Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 831 832 837 844 850 855 857 16 Theory of Linear Ordinary Differential Equations 16.1 Exact Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2 Nature of Solutions . . . . . . . . . . . . . . . . . . . . . . . . 16.3 Transformation to a First Order System . . . . . . . . . . . . . . 16.4 The Wronskian . . . . . . . . . . . . ...
View Full Document

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture