{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Note04 - Outline Notation of the derivative...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Outline Notation of the derivative Diﬀerentiability and continuity Lecture 4 - Diﬀerentiation AMA140/150 Calculus Basic rules of diﬀerentiation Derivative of inverse function Logarithmic function and exponential function Diﬀerentiation of parametric function Implicit diﬀerentiation AMA140/150 Calculus Lecture 4 - Diﬀerentiation Notation of the derivative AMA140/150 Calculus Lecture 4 - Diﬀerentiation Notation of the derivative Notation of the derivative Let f be a function deﬁned on an interval I . We say that f is diﬀerentiable at a point x0 in I if the limit lim f x0 x →0 x − f x0 x exists. The limit, when it exists, is called the derivative of f at x0 , and is denoted by f ′ x0 . The expression at x0 . f x0 x −f x0 x , where AMA140/150 Calculus x 0, is called a diﬀerence quotient of f Lecture 4 - Diﬀerentiation Geometrical interpretation: the derivative f ′ x0 , if exists, is the slope of the tangent line to the group of the function y f x at the point x0 , f x0 . Physical interpretation: Suppose an object moves along a straight line and its distance from a ﬁxed point on the line at time t is given by y f t . Then the derivative f ′ t0 is the instantaneous velocity of the object at the time t0 . AMA140/150 Calculus Lecture 4 - Diﬀerentiation Notation of the derivative Suppose y dy dx Derivative f x . It is also common to use the notation df dx x x0 f ′ x0 x0 x − f x0 x x →0 x x0 Notice that we put x f x0 lim lim x →x0 f x − f x0 . x − x0 Example 4.2 Let y d3 x dx dy dx x in the last equality. x 3 . Then for any x , fx x →0 Derivative function f′ x lim Example 4.1 For the constant function f x f′ x lim fx x −f x x x →0 ′ Thus, f x x →0 lim 0 x →0 ′ AMA140/150 Calculus 3x 0 and Lecture 4 - Diﬀerentiation AMA140/150 Calculus Solution: We have to ﬁnd f ′ 0 x −f 0 x lim |x |? f0 x −f 0 . Notice that x x →0 lim Example 4.4 Let f x 0 x −0 x x →0 lim 1 x →0 lim f0 x −f 0 x Therefore, lim f0 lim x →0 − −0 x −0 x 1, lim −1 x → 0− x −f 0 does not exist and hence f is not x x →0 diﬀerentiable at 0. if x ≥ 0, x2 x x f′ 2 2 3x 2 . 12. if x < 0. Solution. Again we have to ﬁnd f ′ 0 lim f0 x −f 0 x x →0 x → 0− 3 Diﬀerentiability Example 4.3 Is f diﬀerentiable at 0 if f x x →0 x Lecture 4 - Diﬀerentiation x6 f0 2 x − x3 0. Diﬀerentiability lim 3 In particular, f′ 0 C x 3x 2 for all x . Thus, f ′ x 0. 2 x x lim 3x 2 0 for all x . Equivalently, d C dx 3x x →0 x →0 C −C x 3x x 3x 2 x lim C, lim 3x 2 x x →0 x −f x . x x →0 x3 lim Given a function f . Suppose D is the set of all points at which f is diﬀerentiable. The derivative function of f , f ′ , with domain D is deﬁned by fx x 3 − x3 x x lim −1. lim f0 lim lim lim f0 x →0 x −f 0 . Notice that x x 6 − 06 x 0 x →0− x →0 x 2 − 02 x 0 x →0 x −f 0 x x → 0− Is f diﬀerentiable at 0? x → 0− x →0 Remark that x if x > 0, fx −x if x < 0. ⇒ 1 if x > 0, −1 ′ if x < 0. In this case, fx f′ x 5 6x if x > 0, 0 2x AMA140/150 Calculus Lecture 4 - Diﬀerentiation x lim x x −f 0 exists and equals to 0. Hence f is x 0. diﬀerentiable at 0 and f ′ 0 Therefore, lim f0 lim AMA140/150 Calculus if x 0, if x < 0. Lecture 4 - Diﬀerentiation 5 0, 0. Diﬀerentiability and Continuity Basic rules of diﬀerentiation Diﬀerentiability ⇒ Continuity Basic rules of diﬀerentiation If f is diﬀerentiable at x0 , then f is continuous at x0 . Suppose f and g are diﬀerentiable at a point x and c is a constant. Then f x − f x0 x 0, we have ′ cf′ x ; f x − f x0 · x − x0 . x − x0 Then lim f x − f x0 · x − x0 x − x0 lim lim f x − f x0 x →x0 f x − f x0 x − x0 x →x0 x →x0 f ′ x0 · 0 Hence, lim f x x →x0 · lim x − x0 1 cf 2 f g ′ x f′ x 3 Proof. Suppose f is diﬀerentiable at x0 . For any f −g ′ x f ′ x − g′ x ; 4 fg 5 x →x0 ′ f g x g′ x ; f′ x g x x ′ f x g′ x (Product Rule); f ′ x g x − f x g′ x g2 x x (Quotient Rule). 0. f x0 . Thus, f is continuous at x0 . AMA140/150 Calculus Lecture 4 - Diﬀerentiation Derivatives of some common functions Derivatives of some common functions d 1 C 0 for any constant C ; dx dr 2 x r x r −1 for any nonzero real number r ; dx d 3 sin x cos x ; dx d 4 cos x − sin x ; dx d 5 tan x sec2 x ; dx d 6 cot x − cot2 x ; dx d 7 sec x sec x tan x ; dx d 8 csc x − csc x cot x . dx AMA140/150 Calculus Lecture 4 - Diﬀerentiation AMA140/150 Calculus Lecture 4 - Diﬀerentiation Derivatives of some common functions Example 4.5 Find the derivatives of the following functions. √ 1 3 x− x 1 fx 5x 2 2 gx 3 sin x x3 4 x 3 sin x hx kx x 4 sin x cos x 10x 3 √ 2x Solution. 1 f′ x 2 g′ x 3 h′ x 4 k′ x 5 2x 3 1 1 −2 x 2 3x 2 sin x − −x −2 x 3 cos x . cos x x 3 − sin x 3x 2 x6 x cos x − 3 sin x . x4 4x 3 sin x cos x 4x 3 sin x cos x 1 . x2 x 3 cos x − 3x 2 sin x x6 x 4 cos x cos x x 4 sin x − sin x x 4 cos2 x − x 4 sin2 x . AMA140/150 Calculus Lecture 4 - Diﬀerentiation Chain Rule Chain Rule Chain Rule Suppose h is diﬀerentiable at x0 and g is diﬀerentiable at h x0 . Let f Then f is diﬀerentiable at x0 and ′ ′ f x0 g h x0 g ◦ h. g hx x →x0 x →x0 lim x →x0 g h x0 h x − h x0 · x − x0 · lim x →x0 h x − h x0 x − x0 cos3 x kx cos sin x 2 x Solution. 2 f′ x 3x g′ x cos 2x · 3 h′ x 3 cos x 4 k′ x sin sin x 2 1 2 · d x dx 1 d 2x dx · 1 2 2 cos 2x d cos x dx · 3x −3 cos2 x sin x 1 d sin x 2 dx sin sin x 2 1 cos x 2 · −2x sin sin x 2 AMA140/150 Calculus d2 x dx cos x 2 Lecture 4 - Diﬀerentiation Derivative of inverse function Example 4.7 Find the derivatives of the following functions. ′ Suppose f is diﬀerentiable at x0 with f x0 y0 f x0 and f −1 ′ y0 0. Then f −1 is diﬀerentiable at 1 1 . f ′ x0 d sin−1 y dy 2 d cos−1 y dy Solution. Let f x sin x . Then f −1 y derivative of inverse function, Sketch of proof. Notice that f −1 ◦ f x d sin−1 y dy x. Diﬀerentiating both sides of the equation and applying Chain rule, d f −1 ◦ f x dx x x0 d x dx · f ′ x0 y0 · f ′ x0 f −1 ′ d tan−1 y dy sin−1 y . By the theorem of 1 f′ x y 1 cos x x x0 1 3 1 1 2 1 − sin x 1 − y2 1 f x0 ′ hx 4 sin 2x Lecture 4 - Diﬀerentiation Derivative of inverse function f −1 3 · h x0 . Derivative of inverse function ′ 3 ′ AMA140/150 Calculus f −1 1 2 − g h x0 x − x0 g h x − g h x0 h x − h x0 ′ gx x 1 g h x − g h x0 h x − h x0 lim fx 2 · h x0 . f x − f x0 lim x →x0 x − x0 lim 1 ′ Sketch of proof. Notice that h is diﬀerentiable at x0 and hence h is continuous at x0 . Therefore, h x → h x0 as x → x0 . Then f ′ x0 Example 4.6 Find the derivatives of the following functions. f −1 ′ AMA140/150 Calculus y0 1 . f ′ x0 Lecture 4 - Diﬀerentiation 1 d sin−1 y dy 1 1 − y2 2 d cos−1 y dy −1 3 1 − y2 AMA140/150 Calculus Lecture 4 - Diﬀerentiation d tan−1 y dy 1 1 y2 . Logarithmic function Properties of Logarithmic function Logarithmic function The logarithmic function f x ln x is deﬁned as follows. 1 , t If x ≥ 1, then f x is the area enclosed by y t 1, and t x ; Properties of Logarithmic function the t -axis, the lines The logarithmic function ln x deﬁned on 0, ∞ has the following properties. 1 the Notice that 1 ln 1 3 ln x < 0 if 0 < x < 1. ln a 2 a ln b ln b ; ln a − ln b ; ln an n ln a for all integer n. (Indeed, it holds for all real number n.) ln x > 0 if x > 1; 2 ln ab 3 If 0 < x < 1, the f x is the negative of the area enclosed by y t -axis, the lines t 1, and t x . 1 , t Derivative of Logarithmic function 0; 1 ln x is diﬀerentiable for all x ∈ 0, ∞ and d ln x dx 2 AMA140/150 Calculus ln x is a continuous function on 0, ∞ . Lecture 4 - Diﬀerentiation AMA140/150 Calculus Exponential function 1 . x Lecture 4 - Diﬀerentiation Properties of exponential function Exponential function Since the logarithmic function ln 0, ∞ → is one-to-one and onto inverse function exists. The inverse function is gx ex for all x ∈ , the . This function is called the exponential function. By the deﬁnition of inverse function, we have e ln x x for all x ∈ 0, ∞ , Properties of exponential function The exponential function satisﬁes the following properties. 1 e0 2 ea 3 The exponential function is diﬀerentiable everywhere and 1; b e a · e b for any real numbers a and b ; and ln e x x for all x ∈ d ex dx . Notice that e e 1 2.71828182845905 . . . . Sketch of proof of (3). Since the exponential function is the inverse of the e y . Applying logarithmic function, let y f x ln x . Then x f −1 y the result for derivative of inverse function on f , dy e dy AMA140/150 Calculus ex . Lecture 4 - Diﬀerentiation f −1 ′ y AMA140/150 Calculus 1 f′ x 1 1/x x ey . Lecture 4 - Diﬀerentiation Logarithmic function and exponential function Diﬀerentiation of parametric function Diﬀerentiation of parametric function Example 4.8 Find the derivatives of the following functions. 1 fx e sin x 2 gx ln x 2 3 ln ln cos x 2 hx Suppose x ft f′ x 2 g′ x 3 h′ x x2 dx dt provided that 2x − sin x . x 2 cos x 1 · 2x − sin x cos x Example 4.9 Find −2x sin x 2 . cos x 2 ln cos x 2 1 1 · · − sin x 2 · 2x ln cos x 2 cos x 2 dy dy and dx dx dx dt 3t 2 and 1 implies t Lecture 4 - Diﬀerentiation ft, y Example 4.10 Find gt, dy dx and dy dt 2t dy dx 2 dx provided that dt d dt dy dx dx dt 3x 2 x ,y dy if x 3 dx sin x cos x dy dx cos x y y cos x y − 3y 2 − 2y cos x , dx dt 3t 2 , dy dx − dy dt d dt 2 3t 2 ⇒ AMA140/150 Calculus 1,1 2 . 3 Lecture 4 - Diﬀerentiation y y3 y 2 cos x . 3y 2 dy dx 2y dy dx and t 2 for t > 0. d 2y dx 2 dy dx −2/3t 2 3t 2 dy dx 2 . 3t − Lecture 4 - Diﬀerentiation cos x y 2 − sin x dy dx −3x 2 − y 2 sin x − cos x −3x 2 − y 2 sin x − cos x y . cos x y − 3y 2 − 2y cos x In particular, 2t , Then 2 . 3t dy dx 2 t 3 and y 2t 3t 2 1. Then 0. dy Example 4.9 (cont.) Find if x dx 2 Solution. Notice that dy dx ⇒ Solution. Diﬀerentiate both sides by x , are diﬀerentiable functions of t . Then 2 t 2 for t > 0. 1,1 Implicit diﬀerentiation Diﬀerentiation of parametric function Suppose t 3 and y if x x ,y AMA140/150 Calculus Diﬀerentiation of parametric function , 0. dy dx AMA140/150 Calculus gt Solution. Now x , y x dy dt dx dt dy dx e sin x · cos x . y are diﬀerentiable functions of t . Then cos x Solution. 1 and x ,y 0,0 0−0−1 1−0−0 −1. 2 . 9t 4 AMA140/150 Calculus Lecture 4 - Diﬀerentiation y ...
View Full Document

{[ snackBarMessage ]}