FullNotes

# FullNotes - MATH 529 – Mathematical Methods for Physical Sciences II Christoph Kirsch Contents 0 Overview of the lecture 3 0.1 Partial

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MATH 529 – Mathematical Methods for Physical Sciences II Christoph Kirsch April 27, 2011 Contents 0 Overview of the lecture 3 0.1 Partial differential equations . . . . . . . . . . . . . . . . . . . 4 0.2 Complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Review of Fourier analysis 8 1.1 Fourier transform: definition . . . . . . . . . . . . . . . . . . . 8 1.2 Fourier transform: properties . . . . . . . . . . . . . . . . . . 8 1.3 Periodic functions: Fourier series . . . . . . . . . . . . . . . . 9 1.4 Application: solution of ODEs . . . . . . . . . . . . . . . . . . 10 12 Partial Differential Equations (PDEs) 12 12.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12.2 1D Wave Equation: Vibrating String . . . . . . . . . . . . . . 16 12.3 1D Wave Equation: Separation of Variables, Use of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 12.4 D’Alembert’s Solution of the Wave Equation. Characteristics. 26 12.5 Heat Equation: Solution by Fourier Series . . . . . . . . . . . 31 12.6 1D Heat Equation: Solution by Fourier Integrals and Transforms 38 12.7 2D Wave Equation: Vibrating Membrane . . . . . . . . . . . . 46 12.8 Rectangular Membrane. Double Fourier Series . . . . . . . . . 48 12.9 Laplacian in Polar Coordinates. Circular Membrane. Fourier- Bessel Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 1 12.10Laplace’s Equation in Cylindrical and Spherical Coordinates. Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 12.11Solution of PDEs by Laplace Transforms . . . . . . . . . . . . 72 12.12Application: hydrogen-like atomic orbitals . . . . . . . . . . . 73 12.13Application: Unbounded domains and artificial boundaries. Dirichlet-to-Neumann map. . . . . . . . . . . . . . . . . . . . 76 12.14Review of Chapter 12 . . . . . . . . . . . . . . . . . . . . . . . 79 12.14.1Basic Concepts (12.1) . . . . . . . . . . . . . . . . . . . 79 12.14.2Examples . . . . . . . . . . . . . . . . . . . . . . . . . 80 12.14.3Separation of Variables (12.3, 12.5, 12.8, 12.9, 12.10) . 80 12.14.4Method of Characteristics (12.4) . . . . . . . . . . . . . 88 12.14.5Fourier Integrals (12.6) . . . . . . . . . . . . . . . . . . 90 13 Complex Numbers and Functions 92 13.1 Complex Numbers. Complex Plane. . . . . . . . . . . . . . . . 92 13.2 Polar Form of Complex Numbers. Powers and Roots . . . . . 97 13.3 Derivative. Holomorphic Function. . . . . . . . . . . . . . . . 100 13.4 Cauchy-Riemann Equations. Laplace’s Equation. . . . . . . . 103 13.5 Exponential Function . . . . . . . . . . . . . . . . . . . . . . . 108 13.6 Trigonometric and Hyperbolic Functions . . . . . . . . . . . . 109 13.7 Logarithm. General Power . . . . . . . . . . . . . . . . . . . . 110 14 Complex Integration 113 14.1 Line Integral in the Complex Plane . . . . . . . . . . . . . . . 113 14.2 Cauchy’s Integral Theorem . . . . . . . . . . . . . . . . . . . . 121 14.3 Cauchy’s Integral Formula . . . . . . . . . . . . . . . . . . . . 12514....
View Full Document

## This note was uploaded on 11/17/2011 for the course MATH 529 taught by Professor Staff during the Spring '08 term at UNC.

### Page1 / 209

FullNotes - MATH 529 – Mathematical Methods for Physical Sciences II Christoph Kirsch Contents 0 Overview of the lecture 3 0.1 Partial

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online