Lecture15

Lecture15 - 13.6 Trigonometric and Hyperbolic Functions...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 13.6 Trigonometric and Hyperbolic Functions With the complex exponential function, trigonometric and hyperbolic func- tions may also be generalized to the complex numbers: for z ∈ C , we define cos z := 1 2 ( e iz + e − iz ) , sin z := 1 2 i ( e iz − e − iz ) , (639) as well as cosh z := 1 2 ( e z + e − z ) , sinh z := 1 2 ( e z − e − z ) . (640) Since the complex exponential is entire, so are the functions cos, sin, cosh, and sinh. We may also consider quotients such as tan z := sin z cos z , tanh z := sinh z cosh z . (641) The derivatives of these functions are given like for the real functions, namely by cos ′ z = − sin z, sin ′ z = cos z, (642) cosh ′ z = sinh z, sinh ′ z = cosh z. (643) We determine the real and imaginary parts from the definitions: cos( x + iy ) = 1 2 ( e i ( x + iy ) + e − i ( x + iy ) ) = 1 2 ( e ix e − y + e − ix e y ) (644) = 1 2 e − y (cos x + i sin x ) + 1 2 e y (cos x − i sin x ) (645) = cos x 1 2 ( e y + e − y ) − i sin x 1 2 ( e y − e − y ) (646) = cos x cosh y − i sin x sinh y. (647) In the same way, we find sin( x + iy ) = sin x cosh y + i cos x sinh y, (648) cosh( x + iy ) = cosh x cos y + i sinh x sin y, (649) sinh( x + iy ) = sinh x cos y + i cosh x sin y. (650) 109 Absolute values are given by | cos z | 2 = cos 2 x cosh 2 y + sin 2 x sinh 2 y (651) cosh 2 y − sinh 2 y =1 = cos 2 x (1 + sinh 2 y ) + sin 2 x sinh 2 y (652) = cos 2 x + (cos 2 x + sin 2 x ) sinh 2 y (653) = cos 2 x + sinh 2 y, (654) and in the same way | sin z | 2 = sin 2 x...
View Full Document

This note was uploaded on 11/17/2011 for the course MATH 529 taught by Professor Staff during the Spring '08 term at UNC.

Page1 / 5

Lecture15 - 13.6 Trigonometric and Hyperbolic Functions...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online