IntermolecularForces

IntermolecularForces - Oakland Schools Chemistry Resource...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Oakland Schools Chemistry Resource Unit Intermolecular Forces Brook R. Kirouac David A. Consiglio, Jr. Southfield Lathrup High School Southfield Public Schools
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Bonding: Intermolecular Forces Content Statements: C2.2: Chemical Potential Energy Potential energy is stored whenever work must be done to change the distance between two objects. The attraction between the two objects may be gravitational, electrostatic, magnetic, or strong force. Chemical potential energy is the result of electrostatic attractions between atoms. C3.3: Heating Impacts Heating increases the kinetic (translational, rotational, and vibrational) energy of the atoms composing elements and the molecules or ions composing compounds. As the kinetic (translational) energy of the atoms, molecules, or ions increases, the temperature of the matter increases. Heating a sample of a crystalline solid increases the kinetic (vibrational) energy of the atoms, molecules, or ions. When the kinetic (vibrational) energy becomes great enough, the crystalline structure breaks down, and the solid melts. C4.3: Properties of Substances Differences in the physical and chemical properties of substances are explained by the arrangement of the atoms, ions, or molecules of the substances and by the strength of the forces of attraction between the atoms, ions, or molecules. C4.4: Molecular Polarity The forces between molecules depend on the net polarity of the molecule as determined by shape of the molecule and the polarity of the bonds. C5.4: Phase/Change Diagrams Changes of state require a transfer of energy. Water has unusually high-energy changes associated with its changes of state.
Background image of page 2
Content Expectations: C2.1c: Compare qualitatively the energy changes associated with melting various types of solids in terms of the types of forces between the particles in the solid. C3.3B: Describe melting on a molecular level. C4.3A: Recognize that substances that are solid at room temperature have stronger attractive forces than liquids at room temperature, which have stronger attractive forces than gases at room temperature. C4.3c: Compare the relative strengths of forces between molecules based on the melting point and boiling point of the substances. C4.3d: Compare the strength of the forces of attraction between molecules of different elements. (For example, at room temperature, chlorine is a gas and iodine is a solid.) C4.3f: Identify the elements necessary for hydrogen bonding (N, O, and F). C4.3g: Given the structural formula of a compound, indicate all the intermolecular forces present (dispersion, dipolar, hydrogen bonding). C4.4a: Explain why at room temperature different compounds can exist in different phases. C5.4c: Explain why both the melting point and boiling points for water are significantly
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 47

IntermolecularForces - Oakland Schools Chemistry Resource...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online