3第三章_微分ä¸&sh

3第三章_微分ä¸&sh

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3.1 1 x x f arctan ) ( = ] 1 , [ - 4 ) 5 )( 3 )( 2 )( 1 ( ) (---- = x x x x x f ) ( = x f 3 ) 5 , 3 ( ), 3 , 2 ( ), 2 , 1 ( 2 : ) ( x f ] , [ b a ) , ( b a ) ( ) ( b f a f = ) ( x f ) , ( b a ) ( = f B A B C D ] 1 , 1 [- C A. x e x f = ) ( B. | | ) ( x x f = C. 2 1 ) ( x x f- = D. = = , , 1 sin ) ( x x x x x f ) ( x f ) , ( b a 2 1 x x ) , ( b a B A ) , ( ) ( ) ( ) ( ) ( 2 1 1 2 b a f x x x f x f - =- B ) ( ) ( ) ( ) ( 2 1 2 1 f x x x f x f - =- 1 2 , x x C 2 1 1 2 2 1 ) ( ) ( ) ( ) ( x x f x x x f x f < < - =- D 2 1 1 2 1 2 ) ( ) ( ) ( ) ( x x f x x x f x f < < - =- 3 ) ( 2 cot arctan < <- = + x x arc x x arc x x f cot arctan ) ( + = 1 1 1 1 ) ( 2 2 = +- + = x x x f ) ( x f c x f = ) ( (1) 2 f = ) ( 2 cot arctan < <- = + x x arc x 4 ) ( x f ) , ( b a ) ( ) ( ) ( 3 2 1 x f x f x f = = 1 2 a x x < < 3 x b < < : ) , ( 3 1 x x ) ( = f ) ( x f ] , [ 2 1 x x , ) , ( 2 1 x x , ) ( ) ( 2 1 x f x f = ) , ( 2 1 1 x x ) ( 1 = f ) , ( 3 2 2 x x ) ( 2 = f ) ( x f ] , [ 2 1 ) , ( 3 1 x x ) ( = f 5 6 2 1 3 2 = + + + x x x 6 2 1 ) ( 3 2 x x x x f + + + = 3 1 ) 2 ( , 1 ) ( <- =- = f f ) , 2 (- 1 ) ( = f ) , ( , 2 1 + - x x 2 1 x x < ) ( ) ( 2 1 = = x f x f ) , ( 2 1 x x ) ( = f 2 1 1 2 = + + 2 1 1 2 + + 6 2 1 3 2 = + + + x x x 6 ) ( x f ) ( x f ] , [ b a ) ( , ) ( , ) ( < < b f c f a f c b a , ) , ( b a , ) ( = f ....
View Full Document

Page1 / 15

3第三章_微分ä¸&sh

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online