Wi_VWOBdeel5H18 - a I=hetaantalkeerfit PUL 3 =...

Info iconThis preview shows pages 1–21. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 18
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 20
Background image of page 21
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a I=hetaantalkeerfit PUL': 3] = binnmpdfflfléfi} su 13.155 1: X=hct amtalkmmod HI 5 5} =hinomcdff12,§.5} 1:: 11,322 a X=hnt aantal Imel- biauw PEI211=l—P[X=UJ=I —binampdf[9,§,fl)== 9.993 d Pifijfkenblauwendriekeumod}: {fiffifa H.065 e Ptachtkwrblauw, vijfkeerrondendrie halal-wit) = (186) . . {gigfwim 0,054 a a. X =hetaantalkm aerate opslagin PIX = 5} = hinampdfflfl. [3.551 5] a: 43.234 1:: Hansen de mama fier in} = 0,451 a 0.59 as $019 a I=hctaanmkucrme¢mdeknikkers 5 p=Pitwe=emde3~=Q=fi (3) Pp: = 3} = binampdffifi, 155,3) :5 0,214 ‘ b X = hat aantal kn: twat: Witt: knikkers 3 p=P{tW¢¢Witt¢}= (2) =15 HI 5 2} = hinomcdfia. ,5 , 2} :5 mm c X = but aantal kmvemzhilleud gtklemfle tnjkkm 5 _ 3 p = flunmdceneenwittel= Egg = 11,5 Pix =4} ubimmpdfififlfifi} A: (LIFE :1 Evie: he: twee I'D-d: envierkeer twee verachjflend gatlcuzda} = , {a4 _ ln.5,, a: M 31 :35'5Efiflqéfl1l ‘ :1 H134} r ngrgzm=rifirsm}-Hrs1:) 1: 11111.13) 5 P{4{X-r:12}=P[XEII]—P[}fg.4] c P(X}5]=l-FEX55} h P{EEX<5}=P{X54J-P{XSI} d Exempt-PIKE?) iPi4cX53}=p{rgan—P(X54} e PIX:7}=P{X56} j Piriussenfianlm=fijfiéfc2fil =PUIE 19} —p{r 5 a) I! a HI «1 10} = For 5 9} = binumcdfilfi, I142, 9) :3 49,34}- 1: Pix 233} = 1 — HI 5 5') =- 1— binomvdflfifiAL 1} m 0,339 a. flf_-....J.._ m 1..............'. _ DEV ~193=1_ DEV :- t'h d Pflmmfiun 16k:me = PIE? 5 X 516} =31}! 5133—135? 5 3} = binnmadfifi, 3.43, 13} — hinomudfllfi, 0.42, 3} 33 £14531 3 Hubsmm Skew-am] = 353:; a) = 1—153 5 31:1— binomadfilififilfl =3 [3.932 r manukmsm] =Pfif=9 of r: m} =35? =3} +P{X= m} = hincrmpdflli. 5.42, 5'} + binumpdfffi, 0.4.2, If!) a: {3,294 a a. X = 133: aantal he: agape}. H3: 3 33:1— 33;): 5 4}=1- binomcdfflfljfi) :3 13,523 I: X =he: aantal kmappel mo 5 3' -:: 33;. = H3: 513}— HI 5 m} = binomcdfllfi, g, 13} - binamcdfllfizig , ID) a 433345 c I = hztaanxalkmappel H3" :.~ 6:11:15 33:3“ 5 +53} = I — binomcdf'flflfljfifl] :5 {3,013 :1 X = but aantal ken: kcrsen HI: = 3) = binompdfiflfi, é , 31 a 3,145 -f-;3bjflflafi$f a a X = hat mm pmoncn ‘65 plus’ Pix“ 3* 213} = 1 - Pix 5 1D} 2 I —131‘-m3mcdr{3fl, (113?, 211} HHIUGE b X =hetaama1 personal: Zfi—Efijaar HI 5 15} 2 binumcdflfit}, 0.236, 15} a 13,033 a: I =h¢t mental parsomd-D—fidjaar 205313131131] is {1,2 r3!) = I15 and-D‘Avanfifi is +3.4 - 31] = 32 Pfilfi 5x 5 33} =P{X§ 31} —PI[X 515] = binumcdfisfl, 3.332, 31} — binommifiafl, 0.332, 15} F: 3,333 a a X = he: mm keer tum: rods knikkers '12 p: Him-m: mde}=%225%= 0,22 2 313' = 3} = binompdfl 13.3.22. 3} #5 {1,346 b X=hctaantalkméénzwarmknikkcr . (3)4”) 34 p=P{é¢nmrt¢)=—L(25—)l—=fi 2 Pp: a In}: 1— PEI 5 9} = 1 - binumcdffilfi,fi, 3} :5 3,031 c X E hut aantnl km: twat: knikkers “gran dazelfd: klmu‘ p = Hm van dazelfdc Elm] = Hm rods] + Pftwae mane] + Pfitwee witte) 12 3 . = Q, (2) ,Q _ 2.6 (25) (:5) (25) + "’5 I 2 2 HI 3: 3} = 313: 5 3} = binnmcdfus, ig, 5} :3 13,333 d X = 13:1 aantal he: minstens £511 rude knikker 13 p =meinst¢n3éénmdej= ] —P(g¢enr¢de}= l—LIL)=D,T4 31:: a 31=1u FILE 5 31:15 bimmcdr{13,u.34,3] a: 13,933 E a x = he: aamal szenjnngemn inverband mntdiefstal H: 2 w) = 1 — Put: 5 95 = 1 — binamudffin, 0.4, 9) as 0,999 b r? = hat mtal wrwczcn jangeren in vet-band met verniefing 10%mfiflis n.1-su= 5 PEI :- 5} = 1 — PL? 5 5) = 1 - hinomdffififl, {1.22, 5} :5 {1,97': 1: X = he: aantal muzijan in verbandmet ecu oven"; daiict Imfi—wA—WA —13%=20% Him: I c l2}=P[K 5113-.FL1E5 1'} = binnmcdflfii}. 13.2, 11} —: hinomcdffififl. 41.2173 :5 mm - - - _, 50 _ 4Q _ l|:|_ 111_ m d H19wmhngm2fidfl‘sta1L—(m) (2a) 13,22 13,4 9,33 210,016 a a Izhetaantalkeerbcidemunt p = Pfibeidemunt} =1; PHI" 5' 5) = hinomcfiffifld, 5] 2: {1,1113 1; X=hetmmlkwmjnstunsmnog¢n p = Pfiminstens man again} = 3* PL?" = 5} = binumpdfflfirfifij 5: 0,00? ._-.|gb_.dzl]da49 a X = hetaamal kam- mum PIIX 3 5} 3:- 11,99 1-P{Xs4:| L‘s-DE? PL? 5. 4} 4: {1,01 binumodfilfi,fi.5,4} 2: 0431544 en hinomadfflfi, 13.5, 4} :5 9343561 13 muctdus minatem 19 Real: min. b X n he! '3th keermjnstens één mum F=me£mtauséénmunfl= I — Haunmunt}=1_§.£=§ Hz 2-: 2} :a 0,93 1—P[X<_:2}:r 0,93 PIX 3‘ 2} at. UM binomcdnfi, 2; :5 0.1133 n: hinamcdrfi. i , 2} as 0,013 I: moat dug minath '3' km gooien met twee geldstukkcn. m X=hetaantaitreffars H}: :3 5} 2:- 0.9 1—P{X54}}fl;9 HIE 4] v: 11.1 L:_-.;-_u'n-I n 1 :1 Ln 15: .— Hunmnu-‘IFHR “A. :11 g-ei'lnflfl X zhxtaantal mrtmwitt: hfikkers p = Hmcnfinej =%1% =§ 2 H}! a 3) :7- 0.95 1—H)! 5 2) :5 0.95 PIX 5 2} < 0.05 binomfidfflfifi . 2} as 0.059 an binomcdfillifl} n: 0.044 It moat dun miustens 1? he: Ewen hfikkcrs pakken. X = hat aantal keen: 000ml: PH“ 5-12) 5- 0.3 1— Pfif512}}0.3 Pp: s 12) a: 0.2 01510111001110. .0. 12} c 0.2 biumcdfljm. 0.50. 12} as 0.223 en binomdffifl. 0.51. 12} :5 0.193 D115 zijn trct'kans per vrije warpis 011315va 0.11. b 3(3) =fl‘{1“F}+1'P=F 1: £112} 123(3) +£[E] +£{B} + ---+E(B} =p+p +p+m+p=np d p = 0.2 Valeria lijstl = {0.1} an ljjstl = {0.0.0.2}. D: upti: 1~Var Stats of IVER gmft d'g = 0.4-. W n a"; } De rageI flopt 1'00: 9 = 0.2. .0 = 0.5 Vonrin Hjstl = {0.1} fijstl = {0.5.0.5}. Du aptie l-Vnr Stats at” IVER. gccft 0‘3 = 0.5. m = G; } De regal I'd-opt vour p = 0.5. p=n,3 Vuerin lijstl = {0.1} an Lijstz 2032.03}. De optic 1-Var Stats of WAR. gear: a; a 0,4. 1.013(1 J03}=n4 }De:agelklopt1rour p=fl.3. a fiz=fl+a+a+u+s= ai+a§+a§+w+ai =53?“ -pi+.ui1—pi+pi1-pi+---+pil —p]=.HnFE1_Pj '. :h'fl'fiflfl'fim' '- X = bet aantaI juist beantwourdc Hagan E[X}=sn-§=12,5 an a... = Jan-£423.05 3 PH! = 12.5} =0 l:- EfXJ+25rx£$115+21i00=10fiE PL! 2 13.52} = 1 — £11.? 5 13] = 1 - himmadfifiu. i. 13] as 0.029 m a X =h€tflfllfl0fldmmagdmmetvaDIvarparfijA Eli-1'1 = 290 9113 = 35 1:11 a; =11——1m.11,11111— 11,1952: 5,43 EfX] - 1r: :5 315 — 5.4-3 = 311,5? 1113. EL!) +11"; 19136-9 5,43 = 41,113 Pia-1,11 «r: I < 41,431 = P1X 5 4-1; _ 111,1: 5 111} = hing-11111111111111“) h bi:mmac11‘{21111,1.11,1111 a: 11,111 b I’ = hat 1131:1131 andmnaagden met vuorkeu: vac-1 partij A £111”) = 5919 41,19 = 99 an. 11-; = 11’51’19 - 11,1111 — 11,13} ==' 3,59 E11") — try a: 99 - 5.59 = 31,41 an E1?) +111» 9:: 911+ 11,59 2 93,59 11111.41 «1 1’ c 93.59} = 911' 5 93} 411* 5 31} = bimmcdfffiflfl. {1.18.99} - binumcdfffiflfl, 11.13, 91} 1:: 9,613 c 11 =2I319 Erfluhrm36—2-5,#3=25,14 en E111? +21r;:=315+1-5,43=45,43 9125,14 «r: I <: 46.4%} = PM 5 415} — H1 5 253 = himmudflzm, 41. 13. 45} — binumcdffzflfi. 1.1.13, 25} 1:13.94? 112.5111} Eff} -2€|'y 9:99—213.59=?2132 an E{1’J+2¢y=9{1+2v8,59=199,13 11112.32 1: 1" <: 1111.131 = P{ 1' 5 1111) h 1111* 5 '12; = 11111011111115.1111, 11.111, 1111) - binomodfififlflfilfi. '12} :21 [U959 m a X = 1111 311111111 keemimtans 9 Eugen p = PEminsttns 9:13:11} = E Pt): g 911} a binnmadffiaafifim as 11,131 b‘ 91" = 11:1 111111111 km minstans 9 1131111 Em = 1111192 11111 graham-9114311211511 £1.11 +1: :1 1n1'1-+1,111 = 101,511 11.1- a 1111,11} = 1 - 11111 <_: 1031 =1 —binom¢d£1350,gg,1+13}z 11,159 123-4515 18.2 De normale verdeling ifliflaflififl . E a D: 3119,1111]: hacflecn klolnrurm. h ,3 u 4 a 11 16 2a if?“ 5""iiflifiirf’fiafiir E ii '5!iiiéihliifiuflfijifiaa Eiiififl' " “I fiiflfiflifiiiiflfiiii‘i'fflflflil!!! ;m:r mg _ amt... flflflflfiflflflfl! - fifiilrulmgii “E gifig yin-4:153:53 iiifii‘fléfi: m1mhiflmmui iiiliilliflfii I! [BEEN] $353-HIEHIIEHEHIHHEHEEEI In: - 3' Iain = FE! mummies 115:] Egg: Egg-3:; .Elfiir’j . 1:31;“ ". . ' .I = II “13L- mfimfiflfifihfli niiiauafiiimmii ' Efififlfiifl!ifiiizflfimflimfl fiifimfifim}Iflnlmlxuiitigilififi Wfitflflfllfifljfiiflfihiifififi " El fiailflllufiifififlgilflami qmul filiti'fll: IN“. -. I“: Ill ._. E. De punter: figgen up can mhte Hill. dus tie tubal heart hij eon normalaverdeljng. d Bijfifl'xfihnmt g=3. Eijfifi‘fihourt n+1“: ll. D113 fi=3 an an: [I—E=3. Indcfprmulgmf athanqukdegeufleufleufl. e Defincfie g-(xl wait-cw] hmrthijdcnnrmalcverdclmgmet 3:21] en ar=5. a a opp = normajndfflflflJfl”, 3125.12} Pd EMS b opylingis'm 1 — 0,65 =fl,35 a zinanrmmfifi, BB. 12} R: 1'53 r: TI Casio nomalndf(-lfl”. 2.1, 1.3, a] = 13,? r1 _ 1,3 _ Twin PCZ '9' ) — 0’? y1= namaludf[—10”.1.l, 1.33.1.1 Vouin y1=P{[2,1—1,3}:xj an an y: = DJ. Jr; = 01?. Dc nptié lawman: gmfi 2: an: ELSE, Dapptiaimem gear: .1: 2: (LETS. D113 a =5 13,51 Bus 0' F5 0,51 a a opp = normalcdfilflm, 1099, 19:15.45} :5 13,193 Dua 1"9,3%hcvat man: dan lfifllfl gram. b app = numalGdfl—IU”, lflfll, 1W5, 5} + normalcdfflflflg, m”, 10135, IS} a: 13,505 Dun 50,5% wijlct meet dan 4 gram 31' 1am hat gamiaidaldn. c marmalcdfl- H)”, mm, p. 3} = {1,02 Via-aria y. = normalcdfl—IGW 1W. 1.3} [TD of m = PEUUCID — x) : 3} [Casio] en y; = 0,02. De optic interaectgeeft x as 14316.4. Dun insteflen up can gamjddclde van mhaatena 101554 3:11:11. a Hmnjfem' klflinar flan 70 cm} = unmaicdfi— 1G”, T0, T5, 13} 2: [L391 E Hall: drin Maine: clan 71:} can] = 13,3913 a: Dfififl -;_- mamas r.- a X mhet aantal palclcen datminder flan 123 gram wnagt Pipak mg: minder dan 123 gram] = normalcdf [—1.13591 123‘1395} = 0,344. . . fix a a} = 1 firm: 5 73:1- binomcdffififl.fl,344...11} :5 13,999 123 b X =hetaantal pakken datmmdnn 132 gram waegt Ptpak mgr maerdan 1323mm] == normalcdfflfii, It‘ll”. 130, 5} = 13,344 PL!" = a} = mumpdrtsmaaa. . . ,3} =5 Elna: E X = hat aantal mman met mm diameter grotm'dan 14,50 mm Pidiametcr grater dun 14,512} m} = normalcdmasu, 10”, 14.31.1112} = 13,055 . .. Pifalflj=1upggnj = 1 — binamndffi ma. mass. . . , 9) :3 ans? 14,50 b X = hat mtg} moeran met Bendismfier rump, 14,21 man: an 14,41 mm Pidiameter man 14,21 mm :11 14,41 mm} =nurmalcdfi1411. 14.41. 14,31,312} = 0.595 . .. PEI a 2G} 2:- 11,95 1 —- PHI 5 19] 3: 13.95 PEI E 15'} d: 9.05 binomndfld-lfijfli ..,19} a: Dfififl en binnmedfldz, 0.595. ..,19} :3 0,1143 D: amkpmcf bastaat uil minarens 42 macrcn. a a X = hat aantal mndmflcn flat lingerdan 9D minuten duun Hmnd‘mart duurt langcr denim minutcn} = marmaladfian. 10*,353} = gm . .. PL? 2 25} = 1 - 31:1 5 24} = 1 - binomodflfifi. 15.323, 24) :1 0,1395 b Flfbouttncht duurt kartm' clan 1'5 minuten} = nomalcdfi—m“, 15, 35.9} R: 0.1103 fig 3a Naar wmchfing dam 3W ~ 0.1153 A: 33 buottochten app - ? hatter dam-fin unrenean flan-Harrier. c X = 11:1: aauta] boauochten datlanger clan 90' minuten duurt bemttmht duurt lanch dun SH} minuth = 03323 . . . PL? .3 a; :- 0,93 l—PLE’ES} maa fixgflcmm binamcdflfl, £1323. . . ,5} has H.025 en binomodfifflfijzfl . . . .5] F: 0,1319 Er mourn minslens 33 boanoclmn plaatsvindeaa. :;=?J.I;r&id=fiidw. a 3; Jill -X is no}: 1101133313.! verdeaeld. b Ia,zieda post-it. c Net. er geldl: 0.1 = 11;. Zia d: poabit. Efiflfififilfiefia -" a De totaie afh'anfielingstijd is T = r + 1"". T ismrmaalwrdaeld met pi? =' I?!) +111} = 1313 “caudal: an a'r = #12: +31 = melanin}. opp = nummlcdflflm. 10”, 28D. m} 2:: 0,1333 Bus in 3.3% M d: manta void“: dc wed-mar niet 111131 tie Bifi van vijf minuten afhandelingstijd. a Hat bmtogcwichtis B = I + I’. B isnormaal verdmldmet p3 2:: 5 +243 = 253 gram en a; = #1131 4-12i = Warm. opp = normakdffilfifl, 11357353, V'lflfifl) :2: 13.599 EMS in 39.9% van dc gevaflm is hat. brutogewicht fil‘fl _ .. :Jifélédsudasa -5 m Detutalnpmductietijdis T=A+3+ (3+1). T is nannan verdecidmt FT =12 +3 +2fl+ [B = 535 an 0':- = #11,? + [5.3! + {1583+ 1.51 = 1.337533. opp: namalcdfififl, In”, 53, fl) 5:: 43,144 D11: 3114324. van :1: gcvaflen duurt :1: productie van can arfikni Iangcr dun can minuut. a ch-oulistudflnaordemaerals 33M, ofwel B-Mlh-U. dus PM} me: V=B-M. I7 is nemalvendeeldmet ,uy =13; - 13,5 = 41.3 mm an F? = y'flJ- +033 = opp = nurmalcdf{fl, 1059. "n.3, JETS] m 11.1390 Bus in9,fl% van dc gcvaflcnis d: bout it oh]: vac-r fie mast. b chuutia Ledikwordemmrais E 1:- M. dusals Vp-ID met I’zfi—M. 1" haurmfldmdfifildmflt ,up =13,2 —- p.“ :n w = Wham. nppliuksia I ufl.fl3 = 113,91 dua nomalcdffi—lfl”, a, 13.2 — m. v‘fififi'} = D31 Vncrin }'1= normalcdff—lfls'gfi. 13.2 — EM] {TI} nf yl =P[(I}— {13,2—x}} : m (Casinfieu y; 213,91. Deoptie iutmect ngt x =5 13,452. Dude Widdmld: diameter van :1: mocrcn moat minatens 13,53 mm zijn. a a Ergutlimmd: vcrlmenala .1": 1’. ofwel .Tr— Yd}, dus Fact) mt: V=X— 1’. V isnnrmaalvcrdeeldmet my a lflli — 1W5 = 10m :11 D'pr = W = WEI. opp: nurmaludffi-lflwfi, 10,9'8—0} :3 0,132 D113 in 13.2% van de gevafleu gaat er hij het vullen limnmde verluren. b Er gaatfimanadu verlumals X «2': I", I] V =1u15- dunk F-{Umet V=X—I"'. iii-E F? F" isnnrmaal vfidzeldmnt pp: Eli—py- en _ appnflpflz dr=J3TJDJL normalodfl—IDWJIT 1015— gn-fl—fl] = 0,002 Erwin y; = normalodflfi—Iflflfi. 1015 —- x, VHS—[F] {TI} ufy1= Pm — {11115 -.x}} = my {Casiom y: = 43,992. D: optic intersect gceft x 5: 989,3. Bus de vulmachim: meet warden afgesreld up can gemiddelde van 939,3 m] nflager. :1 X=Iengt¢manL F=1mgtemn2 Hctvemchflismnerdaulfimals X—~ Y :a- 15 quuF<—15 dusals V345 of Vii—15 met F’-_-X'--f_ V isnurmaalflrdecldmet pr=1‘?3—-1?8=l3£m cu w=W=~fi§¢m 45 15 Pit.ch manna: vuschill mner (hi: 15 cm} =PIIP'}15 of V<-15}=P{F} 151+Firc. —15] 18.3 De fi—wet imfififi- m a H = 30+an+3n+30 =4~ au= Imminutsn ES=W=W=VE+5=Iflminuten h Hmimtenstwee uurenceukwartierfilman] = H3 3 135} = marmaladmas. {099,120,10} :5 43,05? 31; .-, a S isnarmaalverdneldmet fi5=2fl-5 = 100mm :11 a; = Jim-DJ =U,5fifimm. HS 3 11:15} =uormalndfflfl5, 10”,1Dfl.fl.5~.f'2_fl) a: mus h F =hetaantai stapels {fat nictinmdnoa past Pistapel pastnint. inaun duos} -— marmaladf {195, ID". Ill-Ell, 0.55;"2—13} = 13.012 . . . PI['_P‘;=_- 23:1 “Furs 1} =1 - binumodr{12.o.ulz...,1} 250,010 a a PD: «c 20} = normalcdfqfimlfl”, 20,25. 3} 9: mm b S isnormaal verdueidmet p5 = +5 - 25 = 151213111131 cu fis=wfia3=3£m. H3 f: 140} = namalcdfi—IU”, I413, 150, 3%} a 13,037 Til-0' c. 1' = hat 9.3.1.1111 pakkenmat minder dam 141] gram .FrIpak Wecgtmindnrdan MI}ng = unmalcdfl—lflggr 1413, 15mm?) = 0,035. .. H? : 2}= 1—£{F52}= T.—biuumcdf{20Tfl.flEE...,2}-¢=D,249 T is first total: micht van de 12 flesscn an he: krat T lanormaalverdeeldmet pr = 12- 1,5 + 2 = 20kg en err = «HI—F 41,1152 +032 = mks. HT 3:: 33,5} = normalodfunj. 10”, 20, «K0112; :2 135m a -a K = d: tijdsduur van 3611 mnde S isnnmaalvcrdceidmgt 1.55 = 5 +4 =24m1'nuteu an a; = v“? r a = flfifiv’iminuten. 9:5 3» 25} = nonnalodrus, 1099. 24.13.75u'fi) a: H.331 Dus 11am- verwachflng Ward! :1: beachikbm tijd #5: 2-!- US; $331? {163931-50 R: 15m:ij ovexmhmdm. b I =d¢tijdsfiuurme¢n rand: S is mammal verdceldmet p5 = 51;; en a: = msfiminum, figjgfi’gfi PE} 2515;; manna uarmajcdrrzs. In”, 631,0.1wfij 5 (1,112 k Vfiflifl .P: = marmaladfflfi. lfi”.6x,fl.?5vr§} an 1»; = 0,03 m) of y. = P [(15 — 5x} : (UJfiv’Efl an n = 1 - {1,52 {Casio}. De optie intersect goat”: x 9: 3,533. D115 bij can gemiddalde dun: van DEE spelrundc van 3,533 minutenm 3 minutenenfl mfificn of kortcr ward: dc beschikhare tijd minder dan één kam- perjaar averschredm Ail-ME. _ a a Fwd: v x 2, as) = 2-norma1cdf[—lfl99,25,il],,4] #0311 b T is numaalverdeeld met ,uy =31] en a? =%. F[L'{'{25 v If} 35}=2-nnnna1¢dr(—m”.25gn,i) m 2:210“ mflfiflfl c uppiinksvan HID-a is- [l —I}.95} 213,925 Sfl-a =invNonn(fl.UZfi,30,% EDI-aislfifllfi £131.75 :1 I" is normaalvcrdeeldmet p-r = 3|] :11 a: :3}; uppfinksmflis flfifll = flfiflflfi. {i115 1135 up normaiodf(ulfl”1 29,313. 74:) = mama. erin Jr. = normalcdf (-11)”, 29.3mfi) {TI} at H = P111129 - EU} : {4 : V’EJ} {Easier} an y; = umns. De Optic intcrsract gut“: x m 1T3,2. D115 :1 a 1'34. 'Jmav E I =hnt guwicht van can palgie Tamer a PEI q 250} = numaladflf-ulfl”. 2513-, 250.4, (1.6} a: 0,252 Bus 253% van :1: pakjea weegt minder clan 250 gram. 1: T is normaal verdaeld met pr = 2513,4g1'am en -31 a}: mgram. Pram = omaladf(mio”,250,2su.4,fli) an I: J 11 m p: 13 D113 1,894: van de {Imam heefi: E4311 gemiddeid gewicht per pakjc van minder £13.11 250 gram. 1': S ianurmaalvcrdceld mat N = lfl * 250,4 = 2.5mm an 9'3 = «Iii - 0,5 = fljv’mgram. HS 4: 2500} = numalcdf{—lfl”.25flfl,25941 9.5m) :2: [LIME Du: 1,E% van de'dnrzcn heeft can inhuud van minch clan 25m] gram. Ins-25134 Usaufififi-fi app-5‘ 250G d Bij @Mfidelfl get-rich: pal: pakje van minder dam 251} gram wage eeu dons minder flan lfl - 150 = 250!) gram. 3' = he: gewicht van Gen koala: 1" 55mman verdeeld met pl; 2 Iii-4,5 gram an =£E D'II' m Lfigram. at? n» ma) = nemalcdffiflfl, In“. 1045,15} a: {1,954 Bus 963% van d: pakkcu zaI valdoen aan de madam-ling up hat pak. X = da Vulinhcudvanmfles a PM” { 1W] =fl,15 normalcdfi— in”. 1:10. m2, :11} = 9,15 Kroc: in y; = normalcdfi—lfl”, 11113, 102, at} (T1) of y: = Puma .— 1132]: x} [Casiojreu m = 11,15. Da optic interact geefl .1: $5 1,93. Bus d: mdaardafwijfing van de vulinhnud is angemr 1,93 cl. h T ianormaalverdueldmnt pr=102c1 an a}.- =lfl cl. 12 E I ( ' 22% P {100 =uurmalmif -Ifl991lflfl,lfli,;n) - {T J i«4'13?- uppa'? =r U,UUUIE§...mfl,m c 1" = hat natal batten mm: mgemiddelda nflinhnud par flcs mmjnderdanlflflcl PU" 3:1):1- H? = D}=l—binampdf[15.fl.flflfl155...,fljs==s {3,004 El 1’ = hat aantal flfisscn met mindex (Ian 100 (:1. H? g 2;; = binomodf{11,u.15,2) 2: £1,136 10D m D: lwcrancicr stnpt n bonbons in em Elana. X is numeral Verdfleld met p}. = 3? gram {:11 = % gram. HI“ 2:- 35} :> 0,93 normalcdf(35, 109951—55) .1» 3,93 Vuerin y, =numalcdf(35,lfl”,3T,—j~) an h=fl193 [TDch .fi: y. = PHSE - 3T] : (5 : :11 JP; = l - “.93 {Casio}. De uptie intcruactgcuft 'x m 15.4. D115 dc Ezvcrancicr atop: winsttns 2'? hunk-ans in 5:11 dons. 18.4 Beslissen op grand van een steekproef ..1!!E!€E=1M§5T. r: fiblengtnaneenblfis a $1595 a; x 4.: 605} = ummnlcdfifififi. 5135, am}. 4] a 13,739 ‘0 f isnormaalvcrdafldmet pr=fiflflmm m1 ay:%mm. mm c 2'? c: 505} = normaicdf(595, ans. am, 4‘16) 2 1,000 mma a Pitgn unmeht: bijsteflen} 2 Pg 5 595' V T :3 EDI} = . = - alcdf 409* Emmi) 2 Pfl'fifigfl} 2 noun ( ,5 m at film? 599 5m 1: his Aiuvia macht to: bijatelljng uvergaatdan staal :1: machine afgcstdd. up cam nnbekerld gemiddeldc. Omdnt dit gcnfiddeicla unbcicmd is lam j: :5: km up temht bijstclicn Diet berekenm c Huietbijsmlien] = {[599 < 71' «r: 6G1} 4 = normalodf(599. mlnmlafi) F: 9,500 . Ea Eisnermaalverdeeldmetpr=fiflfl en 0f=fi=m¢ “ll-Em 0ppfink0=0pprechts=}-fl,lfl =fl,fl:‘r nag-0.4 Pfiggfl =0,05 000 ‘Wfl-W g. =invNarmfflfl5, EMMA] = 599.341. .. m 599.34 H17 5 3,} = 1 - 0,05 = 0,55 000 5, gr 3', = in?Norm[U.95, 600. {1.4) = 500.65? . . . as fiflfljfi b Hat steekproefgemiddeld: 601,3 is 31-005: .1101: g“ dus Alufia verwarpl Ha an trek: d: mnelusi: fiat :10 machine moat wordan bijgeatcld. £0000. " "a0 .' a 34:0,,- = 1500 an Hum; 05 1500 b E isn0rmaalvard001dmet p}: = 150!) 0:: 0-3;: %= 6. opp 0005 = DP]: rachts = g- 0.05 = 0,025 :1: f” 50;: i: 31,} = 0,005 00: opp: 0,05 31 = invNarmifl.fl25,15flfl,fij = 1433,14. . . F0: 1433.2 PO? 5 3-1.} = 1 — 0,025 = 0,075 dun: J L g, =invNorn1fifl£75,15flfl,fi} = 151155.. . a: 1511,01 5'1 F" c: Hat staekpmefgcmiddelds 14-92,? ligttussen 3. I011 g}, tins-:10 fabrikant ziet gecn aanlciding Hg 1.: vex-warpch trakt 00 000001000..- dat he: nieuwe prncédé dc 1000;15:1qu van de lam-pen niat bemvlwdt. m a Effigy—135m!) 0n Hflplqéfififlflfl 0 T isnnrmaaivcrdfieldmat pr = 55000 m1 a—=i99‘i=500. X 0'0? 0(1'555044} =narmalud£{—5099,33004,35000,500} 000,010 Wm SSE-44 4: Pfi'g 33344] F: 110310 Dug he k ml. . . . Egg m =%_fl!flj =flJflfi tstee pr gemddelde 10 heme:- dan 3: en 10ij dus significant if van 354MB. '.;-.'§'ffifltfidfl3."5 m .1” = 001000050110: 00:: 00:0 bauerii Hum: = 2m, Him;- a‘i- 2001] 00 a = 0,135 5:135 1905} = nomalcdf(-IG”, 1005, 2000, F: 0,003 «a: in: #200 D113 Ha wardt verwurpen. Hat stackpmef'gemiddcldn wijkt significant afvan 2000, a Hnlyx=1fil Hflprgfilfll cu 11:1],05 Pfi31,fl4}=n5rmalmf(m4,m”, 1.51 m #flfiflfll‘ii“ “'1' *3 I m Dua- Ha wordt 'rcl‘WDrpen, De fabrikant zal hcsluiten dc vulmachim apnieaw in ta steilcn. 1 b Ho:,ux=1,fl2, Hfipx-gi-lfil en cz=fl,fl5 HFWE P 2:» 1,55 = . . w “P 5‘3 {3?_ } normalcdf'O-DSJDHJUZ, a]. 550,559.5ga ma? D155 Ha word: Diet verwurpcu. L De fabnkant zal d1: wncIusie trekken 4131 de vulmanhine niet 1 {a huefl t: warden bijgesteld. E] a H,“ =1u,2, prx 5510,: en 5. =u,1u Pf? s 5.55} = mmalcgr(—1u”,5.95, 1-5.2, 139—) :5 5,555 4: in, M Du: Hg wurdt verworpen. De. afnmner trekt dc cunclusie flat :1: gemiddeldz diamctcr significant afwijkt van 10,2 am. Hi] a.- = 13,05 is PC? E 9,9,5] #- l},fl39 } £9. D115 Ha werdtniet verworpen. D: afmmcr whdemnclusi: dat dc genflddtld: {iiamttar nietsignifiuant afwijkt van 10,2 cm. in: Flat besiissingsmumchflfi heel”: tie “501111 “um-mp H, all: If g 31 afals ? 2 5,“. opp links = app realm = é - 0,11} = 0,35 H? E 3]} = {3,135 fins 31: invNorm{D.flS, 10.2, 5.59} = 115,551 . . . 5:: 15,05 Pf}? 5 m = 1 - 5,95 = 0,55 .5155 g,- = invNurmfllfl'fi, 10.35.09} = 10,343 . . . 5t: lfl,35 Hat beslissingsvoafinhrifiis“wrwerp H: 33.5 T!" 5 lflfifi afals T a 11335”. 9,55 18.5 Eenzijdig en tweezijdig toetsen l". EMF-{€155 ‘ a a Dmdat dc bewcring is flat dc lemduur verlengd. Wardt. b Nee, want hat steekpmefgcmiddcldn is Heine: m 1, I : 15m_ Iiiblfi'fiéh‘da '13:- -. E a Hat hefiasingfimorschrifl heefi dc 515m “verwerp H; His 3?: g”. F{?£g}=1—fl,lfl = 5,5 dus . 15 = , 5, — 55,51 3 mvNorm (D 9', 3 m) 9: Hctbesiifiinngoflrschfiflia"verw¢rp Ha .515 E" 3 33,5", 1: Ha: brslissingswurschfifl heefl :1: mm: “Yemen: Ha 3.15 3? E- g”. 15 P17 E 3'] = {1,051 this 3 = invNurm(fl.05, ES. :5 31,5]; H:tbcaIisaingavmmchriftis“v¢rWarp H5 315 f S 31.5”. c Hat basilisfingmumhrifl hcefl dcvom ‘Werp Ha 315 Egg] ufals E 2.3:“. app links = app reel-Its: 1; - 13,01: 13.005 PE? 5 g.) —-.. 0.1105 dus - 15 9. a. = . , s, —-— as 32.2? 31 mvNurm (a DDS 3 m) H? 5 gr] 2 1 - 11,005 =n.995 dus gr = invflurm (11.995, 35, a: 37.73 Hat besflssingsvunrsnhrifi is“v¢rwarp H: 315 f E 82.2 of 9.13 I" 3 31,3". m X = the nfhandeflngatijd van can bestclfing 21 Hwy; =12, Hupx £1 12 an E: =0fi5 HT 5 g} = 11,135 dus g = invNunn{fl.fl5, 12113.15} is 11,D1 Dun bij steekpraefgcmjddnldm van 11,13 minuten of mindcr is er aauleidiug re mndmtaflcn flat :1: afhandelingstijd vermindard is. b Haipx =12, Hum- {12 :11 2:13:01 3 Pfigg} =E,fl1 £11.15 g=ianum(D.fll.12,Fg—fi) 3:11.21 Hut hesfissingsmmchriflis “varwarp Ha 2.15 3’ 5 11,2". Hat mmnefgmniddcldc is 11 minutEn an 13 swundan = 11,3 minutcn. Dit is grater flan l 1.2, Ha ward: dug flirt women. Er is gen aanleidiug an: t: mmluderen dat dc afllandeljngstijd is afgenamen. "FEEEEEEHHETE '. a X = but gewinht var: m paij margarine H111 H = 500, m: ,ulJr } 5m en a = 9,05 l 5 - HI 3 sum} = namalcdr(5m.4,1099.sm. :5 13,034 r a: D113 wr'werp Hg. Eris Eden am Ii: pruducfinafdefing geiijk t: sewn. E X =het Weill: unnatural: wring-palm Hniflx = 5, Hliplx <3. 5 an a = {1.1325 Pf? 5 4,75} = gamma: (41399, 4.75. 5, %) s: #109001 a a: Du: Warp Ha. De consummmorganjsafie kring gtlijk. a Hume: werkt gonad} = His -:: 1' +2: 4.2} = uormalcdffl-Efl-E: 4:15-12} ‘5 “504 b Ha:px=4, Eng: (:4 an a =D,fl5 PG? 5 3.95) = nannnlcdf(-IDH.3.95,4 a 0.00": < a ' m Duswrwcrp Hm Hat gemiddslde wijkt simmt mum mg. I: Pfiabletwkt ningnafi): HE E 3.3 V X 2 4,1] = PHI." 5 3,3} +131?!" 2 4.2) = nonnalcdff—Ifl”, 3.8: 3.95, 13.12) + normalcde-J, 1W. 3.95, ELIE] 5:: 0,134 131.15 [2.4% van de tabletten wart: darn niet am a 3. Hum}: =41}. Hlmx 2: 40' en a: =fl.fl$ Pm <_C g} = l —fl,05 = 5,95 fill-'5 51-: $31.5 g = invNurmfiflflfi, 4D, 1.6) m 42.63 app = W15 Du: bij gamiddeidan van-4:2,? uf grater word: Hg verworpen. b Stel d: laugh: van d: 'atcakiaruefis n. Hmyx =40, Hupr} 40 an o: = 0.05 H? 13- 40.5) 5 ELM PC? 4: 40,5) ,2: 0.95 normaladf (-10”.4fi.5.4fl1 i) :3 0,95 .fi we; in 1-. = normalch (ulflflflfljflfl, m1 of y. = P{(4fl.5 -4fl} : {E : @} {Casiolcn y; = (1,95. De optic inmmt geeft x 2: 692,6. Bus dc maekproefmuet 1.:it1593 ofmwaxmpiarm bestaan. '.:1=lfl":l=‘ld.° 7-9 m X :11; lengtevandeflederlandse man H1): mr= 133, H]:pr}133 $11 a=fl,fll Pf? E 15‘?) = normalodf(197,10”,133. LJ 2:: 0300 if. c: 1..“ 133 Dug vamerp Hp. - De topbasketballera zijn langerdan midfield. E a D: ovemiIfijdingskans is PET 1'. 1'35}. Ms dit mkpmfresultaat bij Ha: p. = 300 aimlaiding geefi 0m Ha tewrwerpen is Hfsflflgm Dmdat P11? 5 135} kleim word: 915 p. grate: clan EGG worcitfis ova-k HI 5 TBS} 5 a bij Hfllflfifl' mat a} 304}. Dus word: HI; no]: verwuqacn hij p :- 311m. 1: Bij y. = 3W i3 '15 nwnchfljdiugakm PI? 5 735] grater clan bij Ben. p—waardc grater flan sou. Bij ,u = 3m wordt Hg dus minderanclvcrwurpcn dun bij can u-mrde grate: flan $00 an dit is gunstignr Y'DDI' d: fahtikant. f ' .Wflfi- fl 1’ zhnt Emma! uu: dateen Nfieflander per week w kijkt Haw;- = 23,4, Hnyq -:: 23,4 an a = [1,025 :13? 5 215} = nu:-rJ:I:ullf:.r:lf(«1&5'9',2145.23.11i 2%) :2 11cm 3 a Du: H1} word: nict mun-pan. 1]»: ben het niet can: met dc haw-21in; van de mcdemrkar van ‘De Star’. E a Hn:px=fiflfl,H1:pz-€Sflfl an cz=fififi 111' m — = I i a. 3 1% Hrs g} - mus fins 3 mvNorm(fl.DS,5Elfl1 m) :1 499.0? £1: = m D115 11:1: gmfiddelde gewicht par pal: moat 499,1} gram ofkleincr zijn. I: H“; = sun, HF” :- 300 an a = 13,025 Pt}? 3 50:34} = normalodf(fifll.94,1fl“,5m. J‘— a: 0,903 «a: a: {E Bus vets-warp Ha. Hut hoofd val: dc afdafing voorraad hijgt gelijk. c How; = 500, Elm;- aéfiflfi en a: 23,65 p. 35 ,4 = 501.¢3.1fl”. .i) cm [.T_ 1313} normalch'( 59H m 9: 323$: Du: verwerp Ha niet. Hat stmkproefrestfltaat udjktnict significant afvan 5W gram Diagnoatische toets El :1 Pp: } an} = 1 — HI 5 so) as 1 — binamcdfllmflfii, so} :3 0.323 I: fix a 53} = 1 - Put: 5 5?} = 1 — binomudfflflfl, ELGS, 57) a: 9.3113 1:. 11:: as of rams] =P{r= as} +ng= 551 = binnmpdfl: 10433.55, 55} + binompdmumfis, as; 1:: 13,166 15 PL? 1:155:11 52mm} = H52 1:; x c. :0) =30: 5 59} — Hr 5 452) = binnmcdf [1012}. 0.455, I59} — binomudffilflfl, 13.65. 62} 2: 13,529 a a thntaantalkcermevgnaantflngen , Hz :1» 1a}=1—P{r 5 1a} =1 — binumcdfufi, m} m 0.105 I: X=hetaantalkaerfingen 511' q: 3} = PE! 5 2} = hinamndfflfi, g, 2) 1:: 13,43? 1: X abet mtalkee: Suffi 03m PIKE ='- 5} = binomydfllfié, 5} 5311.203 11 X =hetaantalkecrl DEE Hagan Fiji-cx <10}=P[Xfi 9)—P{X g 5} = biuumcdrilfi,§.9} — binomodfijifi. g , 5} 5:: [L437 a if = but aantal eieren met mduhbele douitr H: = 1} = Infamy-manna. 1} as (1,155 b X = 11:: mural aim-en met mduhbale duoicr PIE}? 2 3} 2:- {3,15 1— HI 5 2} 3.:- 0:15 HIEflififi binomcdfillfl', 0:33, 2} a: 0,153 :11 hinnmcdfflSfl, 13.03. 2] Rs 0,149 la moat tins minatens 13111I aim kopan. a X =hetaantalprijm Fix a T] 3» £1.95 1— PU: 1: 6} 2: (1,95 PHI 5 6] <7. was bluamndflflfijfifi} F: 0,051 an binamcdflii-fifilifi} a: {1,045 I: mm: dus minstens 45 Rear hnt spcl speIn-n. b X = hat. 33:11:31 prijzm: £[X}=1flfl-fl,25 = 25 an a; = 4,33 Efiz’] + a; :2: 25 + 4,33 = 29.33 fix 3, zglaaj=1wflr 5 29} = I "bluumodfflflflfilfiJm :5 0,151] X = hat aantal buumn [anger-11.21173 mm Hbout langcr dun T.8 mm} = normalcdfilfi, 1335, B, 1.13} m 9J4? . .. PEX = 5} = binompdfifi, +1147. . . , 5) as 0,233 a De tntale productiefijdis T. T = 5 T is normaal Vcrdaehi met pr = 19,3 + 12,5 + 19,"! 2 42,5 minutcn “T. 4am an an» = 1532,53 «1-1.51 +132 = mmutan. opp = normalodms, 1099,41; J93?) :2: 0,2:4 Du: in 21.4%?31115: gevallen duurt hat pmductiepmccs linger dam; drie kwartjnr. 45 a 3 Ban gcachaafde plank is dunner danfifll} cm a1: 2' — D «=: 1.?!) dusals G 6.1,?!) met G=X—.D. G is normaalverdeeld mat pa = 3,10 — 3,35: 2.15 cm en JG = W: mum. app = rum-Juli:de 10”, 3.111]. 2.?5, W} as 11,332 D115 38.2% van de gaschaafde planken is dunner clan 2313 cm. I: Emgcschaafdeplankisdmfldanlmmals X — D c: ESQ-am, duaala G a: 2,?!) met G = If— I}. G isnurmaalmdceldmet m: = 3.10 —'}'.ifi en E 3 m # I J _ m: = Wang. a; Jaimie! nurmflcdfi—lflgg.3.7m3.1fl-flfl. $35.15 mm in N = mmcdfi— 1099,1.70,'3.1j:r — x, W} {TI} A a: y, = figju — [11‘] - x3} = W9???) {Cam “I m n=fl,lfi. J": De upfie intflmt gait I F: 5 mg hij moat deschaafmcbjfl ‘53? Efi'iielde van 0.13m ufminder inataflm mama: —--I—-—ulr"l.'1 E I 2 de inhoud 111m mpot appelmfles a. PG: 2: 1125} = numajcdrms, 111”, 11211, 14} :5 9,351) b 5' 131101111an werciaeldmet p3 = 16~ HE: 11520313111 en (rs = 1¢=Sfigram. HS 23-111mm: normaludffli EDD, 11]”, II 5211.56] 2-.- flfiTT 11am c f is norman mdaddmet 1:? = T213 gram en. [4 =—=3.5gram. “T m opp = normalcdfl-lfl”, 711], 1120.15} :5 ELM! D113 03% van de 11:12:11 hecfi em: gemiddeldn inhoud per pot vanmiuderdanilflgram. 710 11 lemma: :1 puttenwagen. 1' 15110111111111 wrdncldmnt pr = Tlflgmta an a}: 2 ET; gram. 111-121: oppfinksvanflgia $41—$99?) =fl,flflflfi 099.9395 dus n0rn1a1cclf(-lfl”,?191?ifl, %) =u,uuus. 'Vuarin y. =uoma1odf(—w”,719,12n,I—:) [mar 11. = rum — m} : {14: m} {Casio} en 1*: = 11.0005. De uptige interm'tgufl x# 2122,} Dusje moat 1111115113113 1123 porten mm. E_ a Pften nnrmhta verondarstellen dat hat gewicht afwijkcnd is} =Pfi‘521m 1; E22300} = 2&(2‘52100) =2-nmmaludf 41199311103200, 3&1) 0,014 ( «Hz—G ’3 2WD 23110 b Hauuclusie gemiddelde is flat afwijkend} 254:: = nnmalodf magma 2150. — 511,311 ( ' 1,3211) E a Hmm = 1m). Elma ,é um an. a: mus Hat hesiissiugswnmchrifl haeft dc val-m. “verwcrp 343 5.13 553 trials fizgr". opfifinka = app tech: = 413- 0.05 = 0,925 Ho 5 an} a 11,025 .dus = invNarm(fl.fl25, mu, H) = 9 ,m . . . a 93.45. 31 m a PE?" 5 g,} :1 —fl.fl25=fl,9?5 due . 1.5 =mvfiunn 0.975,.1flfl. — = 101 “Sufi-1101,55. 3r ( m ! Hat basiissingsvnnmhrit'tis“verwerp Ha 315 '35 93,45 ofals 753 “11,55”. I: HEN = Hm, H1: pg #100 an 3:0,11‘3 11331330 Pfifi 5 99,12} = normalcdf (-11:99, 93.11, 1m, 9.: 0.053 :> éla “a = fl Dua Ha ward: Inlet verwoxpen. Hat minccntmmnekt d: GDHGIILEiC dam :1: gamiddelde nppervlaktc 1 ti:2 is, 99.12 m a Hat statkpmefmsultaat is gefijk an In: 111:: at is gen flankith hat gcmiddelde van 22W in twijfel te trekken. h Huifix = 2-201], HIIpI 5* Ifi E2 = U595 H}? a 1215} = normalcdf(22?5, 10”,22m, 2—39) E m 11,090 :> {m Dus Hg 'WDrfit niet varworpen, E: is EDGE. aanlflding hnt gemjddelde Iran 11m) in twijfei t: makkeu, I: Hu:nx=22flfl. Hlmx #2201} en a=fl,fl1 “rem - 151:} I P $32215 = 11:131ch 21'! ,lfl”,22flfl. —) '3?! m (X- ) nu ( J m DW=? :3 0,001 at in: Bus Ha wordwcrwurpen. 22E Er is aaflfiding hat gemiddelde van 2200 in mrijfel t: trekken. fl Delengte vandzsmkpmefis n. Hmpx =lfiflfl, HlijJ-‘f 3'1500' en 2:13.10 - Hfzmmj 5:3,“: 3;! «a: 1520} 3 {1,90 normalcdr(—1n”, 152:1, 15m), _::_- 10,90 Veerin yl =nurmaladf(—10”,lfi2fl,lfim. [TI] of J”: Huang —1m]:{75 : ,m} {axiom y: = 0,90. De uptie intersect geeft :- 5:: 23,1. ~ D113 :1: steekpmcf moat nit minstens 14 exemplamn bestaan. ...
View Full Document

{[ snackBarMessage ]}

Page1 / 21

Wi_VWOBdeel5H18 - a I=hetaantalkeerfit PUL 3 =...

This preview shows document pages 1 - 21. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online