homework 14 – RAMSEY, TAYLOR – Due: Dec 4 2006, 4:00 am
1
Gravity
~
F
21
=

G
m
1
m
2
r
2
12
ˆ
r
12
,
for
r
≥
R
,
g
(
r
) =
G
M
r
2
G
= 6
.
67259
×
10

11
N m
2
/kg
2
R
earth
= 6370 km,
M
earth
= 5
.
98
×
10
24
kg
Circular orbit:
a
c
=
v
2
r
=
ω
2
r
=
‡
2
π
T
·
2
r
=
g
(
r
)
U
=

G
m M
r
,
E
=
U
+
K
=

G m M
2
r
F
=

d U
dr
=

m G
M
r
2
=

m
v
2
r
Kepler’s Laws of planetary motion:
i
) elliptical orbit,
r
=
r
0
1

²
cos
θ
r
1
=
r
0
1+
²
,
r
2
=
r
0
1

²
ii
)
L
=
r m
Δ
r
⊥
Δ
t
→
Δ
A
Δ
t
=
1
2
r
Δ
r
⊥
Δ
t
=
L
2
m
= const.
iii
)
G
M
a
2
=
‡
2
π a
T
·
2
1
a
,
a
=
r
1
+
r
2
2
,
T
2
=
‡
4
π
2
G M
·
r
3
Escape kinetic energy:
E
=
K
+
U
(
R
) = 0
Fluid mechanics
Pascal:
P
=
F
⊥
1
A
1
=
F
⊥
2
A
2
,
1 atm = 1
.
013
×
10
5
N/m
2
Archimedes:
B
=
M g
,
Pascal=N/m
2
P
=
P
atm
+
ρ g h
,
with
P
=
F
⊥
A
and
ρ
=
m
V
F
=
R
P dA
→
ρ g ‘
R
h
0
(
h

y
)
dy
Continuity equation:
A v
= constant
Bernoulli:
P
+
1
2
ρ v
2
+
ρ g y
= const,
P
≥
0
Oscillation motion
f
=
1
T
,
ω
=
2
π
T
S H M:
a
=
d
2
x
dt
2
=

ω
2
x
,
α
=
d
2
θ
dt
2
=

ω
2
θ
x
=
x
max
cos(
ω t
+
δ
),
x
max
=
A
v
=

v
max
sin(
ω t
+
δ
),
v
max
=
ω A
a
=

a
max
cos(
ω t
+
δ
) =

ω
2
x
,
a
max
=
ω
2
A
E
=
K
+
U
=
K
max
=
1
2
m
(
ω A
)
2
=
U
max
=
1
2
k A
2
Spring:
m a
=

k x
Simple pendulum:
m a
θ
=
m α ‘
=

m g
sin
θ
Physical pendulum:
τ
=
I α
=

m g d
sin
θ
Torsion pendulum:
τ
=
I α
=

κ θ
Wave motion
Traveling waves:
y
=
f
(
x

v t
),
y
=
f
(
x
+
v t
)
In the positive
x
direction:
y
=
A
sin(
k x

ω t

φ
)
T
=
1
f
,
ω
=
2
π
T
,
k
=
2
π
λ
,
v
=
ω
k
=
λ
T
Along a string:
v
=
q
F
μ
Reflection of wave:
fixed end:
phase inversion
open end:
same phase
General:
Δ
E
= Δ
K
+ Δ
U
= Δ
K
max
P
=
Δ
E
Δ
t
=
1
2
Δ
m
Δ
t
(
ωA
)
2
Waves:
Δ
m
Δ
t
=
Δ
m
Δ
x
·
Δ
x
Δ
t
=
Δ
m
Δ
x
·
v
P
=
1
2
μ v
(
ω A
)
2
,
with
μ
=
Δ
m
Δ
x
Circular:
Δ
m
Δ
t
=
Δ
m
Δ
A
·
Δ
A
Δ
r
·
Δ
r
dt
=
Δ
m
Δ
A
·
2
π r v
Spherical:
Δ
m
Δ
t
=
Δ
m
Δ
V
·
4
π r
2
v
Sound
v
=
q
B
ρ
,
s
=
s
max
cos(
k x

ω t

φ
)
Δ
P
=

B
Δ
V
V
=

B
∂s
∂x
Δ
P
max
=
B κ s
max
=
ρ v ω s
max
Piston:
Δ
m
Δ
t
=
Δ
m
Δ
V
·
A
Δ
x
Δ
t
=
ρ A v
Intensity:
I
=
P
A
=
1
2
ρ v
(
ω s
max
)
2
Intensity level:
β
= 10 log
10
I
I
0
,
I
0
= 10

12
W/m
2
Plane waves:
ψ
(
x, t
) =
c
sin(
k x

ω t
)
Circular waves:
ψ
(
r, t
) =
c
√
r
sin(
k r

ω t
)
Spherical:
ψ
(
r, t
) =
c
r
sin(
k r

ω t
)
Doppler effect:
λ
=
v T
,
f
0
=
1
T
,
f
0
=
v
0
λ
0
Here
v
0
=
v
sound
±
v
observer
, is wave speed relative
to moving observer and
λ
0
= (
v
sound
±
v
source
)
/f
0
,
detected wave length established by moving source of
frequency
f
0
.
f
received
=
f
reflected
Shock waves:
Mach Number=
v
source
v
sound
=
1
sin
θ
Superposition of waves
Phase difference:
sin(
k x

ωt
) + sin(
k x

ω t

φ
)
Standing waves:
sin(
k x

ω t
) + sin(
k x
+
ω t
)
Beats:
sin(
kx

ω
1
t
) + sin(
k x

ω
2
t
)
Fundamental modes:
Sketch wave patterns
String:
λ
2
=
‘
,
Rod clamped middle:
λ
2
=
‘
,
Openopen pipe:
λ
2
=
‘
,
Openclosed pipe:
λ
4
=
‘
Temperature and heat
Conversions:
F
=
9
5
C
+ 32
◦
,
K
=
C
+ 273
.
15
◦
Constant volume gas thermometer:
T
=
a P
+
b
Thermal expansion:
α
=
1
‘
d ‘
dT
,
β
=
1
V
d V
dT
Δ
‘
=
α ‘
Δ
T
,
Δ
A
= 2
α A
Δ
T
,
Δ
V
= 3
α V
Δ
T
Ideal gas law:
P V
=
n R T
=
N k T
R
= 8
.
314510 J
/
mol
/
K = 0
.
0821 L atm
/
mol
/
K
k
= 1
.
38
×
10

23
J
/
K,
N
A
= 6
.
02
×
10
23
, 1 cal=4.19 J
Calorimetry:
Δ
Q
=
c m
Δ
T,
Δ
Q
=
L
Δ
m
First law:
Δ
U
= Δ
Q

Δ
W
,
W
=
R
P dV
Conduction:
H
=
Δ
Q
Δ
t
=

k A
Δ
T
Δ
‘
,
Δ
T
i
=

H
A
‘
i
k
i
Stefan’s law:
P
=
σ A e T
4
,
σ
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
This is the end of the preview.
Sign up
to
access the rest of the document.
 Spring '08
 Turner
 Physics, Force, Gravity, Potential Energy, Work, General Relativity

Click to edit the document details