# Hw5 - homework 05 – RAMSEY TAYLOR – Due Oct 2 2006 4:00...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: homework 05 – RAMSEY, TAYLOR – Due: Oct 2 2006, 4:00 am 1 Mechanics - Basic Physical Concepts Math: Circle: 2 π r , π r 2 ; Sphere: 4 π r 2 , (4 / 3) π r 3 Quadratic Eq.: a x 2 + b x + c = 0, x =- b ± √ b 2- 4 a c 2 a Cartesian and polar coordinates: x = r cos θ, y = r sin θ , r 2 = x 2 + y 2 , tan θ = y x Trigonometry: cos α cos β + sin α sin β = cos( α- β ) sin α + sin β = 2 sin α + β 2 cos α- β 2 cos α + cos β = 2 cos α + β 2 cos α- β 2 sin 2 θ = 2 sin θ cos θ, cos 2 θ = cos 2 θ- sin 2 θ 1- cos θ = 2 sin 2 θ 2 , 1 + cos θ = 2 cos 2 θ 2 Vector algebra: ~ A = ( A x , A y ) = A x ˆ ı + A y ˆ Resultant: ~ R = ~ A + ~ B = ( A x + B x , A y + B y ) Dot: ~ A · ~ B = A B cos θ = A x B x + A y B y + A z B z Cross product: ˆ ı × ˆ = ˆ k , ˆ × ˆ k = ˆ ı , ˆ k × ˆ ı = ˆ ~ C = ~ A × ~ B = fl fl fl fl fl fl ˆ ı ˆ ˆ k A x A y A z B x B y B z fl fl fl fl fl fl C = A B sin θ = A ⊥ B = A B ⊥ , use right hand rule Calculus: d dx x n = n x n- 1 , d dx ln x = 1 x , d dθ sin θ = cos θ , d dθ cos θ =- sin θ , d dx const = 0 Measurements Dimensional analysis: e.g. , F = m a → [ M ][ L ][ T ]- 2 , or F = m v 2 r → [ M ][ L ][ T ]- 2 Summation: ∑ N i =1 ( a x i + b ) = a ∑ N i =1 x i + b N Motion One dimensional motion: v = d s dt , a = d v dt Average values: ¯ v = s f- s i t f- t i , ¯ a = v f- v i t f- t i One dimensional motion (constant acceleration): v ( t ) : v = v + a t s ( t ) : s = ¯ v t = v t + 1 2 a t 2 , ¯ v = v + v 2 v ( s ) : v 2 = v 2 + 2 a s Nonuniform acceleration: x = x + v t + 1 2 a t 2 + 1 6 j t 3 + 1 24 s t 4 + 1 120 k t 5 + 1 720 p t 6 + . . . , (jerk, snap, . . . ) Projectile motion: t rise = t fall = t trip 2 = v y g h = 1 2 g t 2 fall , R = v ox t trip Circular: a c = v 2 r , v = 2 π r T , f = 1 T (Hertz=s- 1 ) Curvilinear motion: a = q a 2 t + a 2 r Relative velocity: ~v = ~v + ~u Law of Motion and applications Force: ~ F = m~a, F g = m g, ~ F 12 =- ~ F 21 Circular motion: a c = v 2 r , v = 2 π r T = 2 π r f Friction: F static ≤ μ s N F kinetic = μ k N Equilibrium (concurrent forces): ∑ i ~ F i = 0 Energy Work (for all F): Δ W = W AB = W B- W A F k s = Fs cos θ = ~ F · ~s → R B A ~ F · d~s (in Joules) Effects due to work done: ~ F ext = m~a- ~ F c- ~ f nc W ext | A → B = K B- K A + U B- U A + W diss | A → B Kinetic energy: K B- K A = R B A m~a · d~s , K = 1 2 m v 2 K (conservative ~ F ): U B- U A =- R B A ~ F · d~s U gravity = m g y , U spring = 1 2 k x 2 From U to ~ F : F x =- ∂ U ∂x , F y =- ∂ U ∂y , F z =- ∂ U ∂z F gravity =- ∂ U ∂y =- m g , F spring =- ∂ U ∂x =- k x Equilibrium: ∂ U ∂x = 0, ∂ 2 U ∂x 2 > 0 stable, < 0 unstable Power: P = d W dt = F v k = F v cos θ = ~ F · ~v (Watts) Collision Impulse: ~ I = Δ ~ p = ~ p f- ~ p i → R t f t i ~ F dt Momentum: ~ p = m~v Two-body: x cm = m 1 x 1 + m 2 x 2 m 1 + m 2 p cm ≡ M v cm = p 1 + p 2 = m 1 v 1 + m 2 v 2 F cm ≡ F 1 + F 2 = m...
View Full Document

{[ snackBarMessage ]}

### Page1 / 11

Hw5 - homework 05 – RAMSEY TAYLOR – Due Oct 2 2006 4:00...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online