{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

pracexam4 - 5 ∀ x Fx →∀ y Gy →∼ Ryx SHOW ∃ xFx...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Introduction to Logic Instructions. For each of the following arguments, construct a formal derivation of the conclusion from the premises. 1. x ( Gx Hx ) xHx Ha SHOW xGx ∼∀ xGx 2. x [( Fx Gx ) ( Hx Ix )] ∼∀ xHx SHOW x Fx 3. x ( Hx →∼ Fx ) ∼∃ x ( Gx Hx ) SHOW x [( Fx Rxa ) →∼ Gx ] 4. xFx ∨∼∃ xGx x ( Fx →∼ Hx ) SHOW x ( Hx Gx ) →∼∃ xHx
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 5. ∀ x [ Fx →∀ y ( Gy →∼ Ryx )] SHOW ∃ xFx →∀ x ( ∀ yRxy →∼ Gx ) 6. ∀ xFx ∨∃ x ( Gx & Hx ) ∃ x ∼ Fx SHOW ∃ xHx 7. ∃ x ∃ yLyx ∃ x ∀ y ( ∃ zLyz → Lxy ) SHOW ∃ xLxx 8. Rab ∃ zRaz →∀ y ( Rya →∀ zRza ) SHOW ∃ y ∀ xRxy ∨∃ y ∀ x ∼ Rxy...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online