Circuits with series and parallel components

Circuits with series and parallel components - tails...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Circuits with series and parallel components Many circuits have a combination of series and parallel resistors. Generally, the total resistance in a circuit like this is found by reducing the different series and parallel combinations step-by-step to end up with a single equivalent resistance for the circuit. This allows the current to be determined easily. The current flowing through each resistor can then be found by undoing the reduction process. General rules for doing the reduction process include: 1. Two (or more) resistors with their heads directly connected together and their
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: tails directly connected together are in parallel, and they can be reduced to one resistor using the equivalent resistance equation for resistors in parallel. 2. Two resistors connected together so that the tail of one is connected to the head of the next, with no other path for the current to take along the line connecting them, are in series and can be reduced to one equivalent resistor. Finally, remember that for resistors in series, the current is the same for each resistor, and for resistors in parallel, the voltage is the same for each one....
View Full Document

Ask a homework question - tutors are online