Thin - when reflecting from a higher-n medium (n2 > n1),...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Thin-film interference Interference between light waves is the reason that thin films, such as soap bubbles, show colorful patterns. This is known as thin-film interference, because it is the interference of light waves reflecting off the top surface of a film with the waves reflecting from the bottom surface. To obtain a nice colored pattern, the thickness of the film has to be similar to the wavelength of light. An important consideration in determining whether these waves interfere constructively or destructively is the fact that whenever light reflects off a surface of higher index of refraction, the wave is inverted. Peaks become troughs, and troughs become peaks. This is referred to as a 180° phase shift in the wave, but the easiest way to think of it is as an effective shift in the wave by half a wavelength. Summarizing this, reflected waves experience a 180° phase shift (half a wavelength)
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: when reflecting from a higher-n medium (n2 > n1), and no phase shift when reflecting from a medium of lower index of refraction (n2 < n1). For completely constructive interference to occur, the two reflected waves must be shifted by an integer multiple of wavelengths relative to one another. This relative shift includes any phase shifts introduced by reflections off a higher-n medium, as well as the extra distance traveled by the wave that goes down and back through the film. Note that one has to be very careful in dealing with the wavelength, because the wavelength depends on the index of refraction. Generally, in dealing with thin-film interference the key wavelength is the wavelength in the film itself. If the film has an index of refraction n, this wavelength is related to the wavelength in vacuum by:...
View Full Document

This note was uploaded on 11/22/2011 for the course PHY PHY2053 taught by Professor Davidjudd during the Fall '10 term at Broward College.

Ask a homework question - tutors are online