Orbital Energies - OrbitalEnergies

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Orbital Energies We saw earlier that the energy of the electron in a hydrogen atom depends only on the  principal quantum number, n. The nucleus of a hydrogen atom has a charge of +1,  however, if the electron is bound to a nucleus of arbitrary charge +Z, then the energy of  the electron is This expression is for a single electron orbiting a single nucleus of charge +Z. If I had a  mole of atoms like this, then I could multiply this expression by Avogadro's Number to  get the total energy for all the atoms: This equation is so popular that the number  1312  is named the Rydberg Constant and  given the symbol R H = 1312 kJ/mole. Let's look carefully at this equation: As n increases (holding Z constant), then the energy  increases  (becomes less  negative). In the limit that n goes to infinity then the energy goes to zero. As Z increases (holding n constant), then the energy 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 5

Orbital Energies - OrbitalEnergies

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online