Quantum Theory of Matter

Quantum Theory of Matter - between momentum (a particle...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Quantum Theory of Matter Wave-Particle Duality of Matter Wave-like Behavior of Matter In 1925, Louis DeBroglie hypothesized that if light, which everyone thought for so long  was a wave, is a particle, then perhaps particles like the electron, proton, and neutron  might have wave-like behaviors. He went further and reasoned that since waves are  described by their wavelength  λ and particles are described by their momentum,  p then we can relate these two variables by recalling that the Quantum Theory says E = h   = hc/ , ν λ and the theory of Relativity says E = m c 2  = p c. Then let's equate these two equations to get the DeBroglie relationship 
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: between momentum (a particle property) and wavelength (a wave property) p = h/ The first real experimental proof of this relationship came from Davisson and Germer in 1925, who found that electrons will diffract and interfere like waves, just like X-ray photons (light). For example, an electron with a velocity of 5.97 X 10 6 m/s (mass of an electron =9.11 X 10-28 g) has a wavelength of: So, matter and light are composed of particles that have wave-like properties. The wave-like behavior is only observed on the subatomic length scales where the masses are small enough for the wavelengths to be detectable....
View Full Document

Page1 / 2

Quantum Theory of Matter - between momentum (a particle...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online