270 formulas - Binomial N trials ; S or F ; Independent;...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Binomial N trials;S or F; Independent; Same Probability pmf :b x ;n , p , = n x p x ⋅ 1 p n x cdf : p X x = B x ;n , p = y = 0 x b y ;n, p, V x = n p ⋅ 1 p E x = np p = x n isan unbiasedestimator Hypergeometric N in pop ,n in sample;S or F , M S' s ;no replacement P X = x = h x ;n, M , N = M x ⋅ N M n x N n E x = n ⋅ M N V x = N n N 1 n ⋅ M N ⋅ 1 M N Negative Binomial independent trials; S or F; Prob of S const Exp continues until r S's pmf :nb x ;r , p = x r 1 r 1 p r ⋅ 1 p x E x = r ⋅ 1 p p V x = r ⋅ 1 p p 2 Poisson Dist P X ; = e − ⋅ x x! E x = V x = P k t = e −⋅ t ⋅⋅ t k k ! =⋅ t ;t = time = expected amount time t GammaDist = 0 x − 1 e x dx f x ; , = 1 ⋅ x − 1 e x x 0 ;  0 ;  0 Standard : = 1 E x =⋅ V x =⋅ 2 P X x = F x ; , = F x ,  F x ; = 0 x y − 1 e y  dy Exp Dist f x ; =⋅ e −⋅ x x 0 E x = 0 x ⋅⋅ e −⋅ x dx = 1 2 = 1 2 F x ; = { 0 x 0 1 e −⋅ x x 0 } Weibull f x ; , = x − 1 e − x x 0 =⋅ 1 1 2 = 2 ⋅[ 1 2 − 1 1  2 ] F x ; , = 1 e − x x 0 Lognormal f x ; , = 1 2 ⋅⋅ x e [ − ln x − ] 2 2 2 ∧ for ln x E x = e  2 2 V x = e 2   2 ⋅ e 2 1 F x , , = ln x − x 0 ChiSquared = 2 = 2 = degrees of freedom f x ; = 1 2 2 ⋅ 2 x 2 − 1 e x 2 x 0 Beta Dist f x ; , , A, B = 1 B A  ⋅ ⋅ x A B A − 1 ⋅ B x B A − 1 Standard: A = 0, B = 1 = A  B A ⋅  2 = B A 2 ⋅⋅  2  1 Normal Dist f x ; , = 1 2 ⋅ e − x − 2 2 2 z = x − 1 SD = 68%, 2 SD = 95%, 3 SD = 99.7% f z ; 0,1 = 1 2 e z 2 2 Std Normal cdf of z is P Z
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online