2025pr5

# 2025pr5 - Math 2025 Quiz #3 (Fall 2004) Name: Inner product...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 2025 Quiz #3 (Fall 2004) Name: Inner product on functions on [o1 b] (piecwise continuous, continous, etc.) is given by” (f, g) :- f: f(t)g{t) cit. The norm is b an¢onm ff@%e If A is a Subset of R“ then the indicator function of A is the function XA : R” -+ given by 1 if t E A {A 2 X“) {a if z: e? A In the following we will aiways use a 2 G and b = l. A) Evahlate the foilowing inner products: a W l ﬁHﬂrLﬂﬂﬁmﬁ: g ;ngggtnwf3 (2) Let ft‘b‘) 1": t2 and 90:5) :5 75 ‘t’ 1- Then (f: 9) 3 ; (3) Lat fa) E Hmong) and 905) E X[o,1/4) (if) * XEl/e,i/2)(t)' What iS {ﬁg} l“; (3 B) Determine which of the following pair of vectors are orthogonal. <1) (1:W132)>(1311“1)3 NC} (2) ﬁt) Sin(27rt) and 9(t) : cos{27rt); Veg: (3) ﬁt) 2: t2 —~ 1 and 9&5) n t; We H C) Evaluate the following norms: . gmw‘” nmm:”t2 (‘2) “(22334)” 2 n“; ; emwwggxeag (1) i &E Q (UV-Him WAN}: \W" 2% '1"; 3’4 (\$13): SERwQCM w a “a A - “" Sgt, #"LMW «Ewimw? V1 3"“ @5 - 1 W mu ¥\3\) W w {a} lwr‘é; "’ a ’ \ 1% I >4; L055“ 133; m‘zELQM wiwwum;ﬂm¢wi 2% ‘1 “3:0 3mm; Q} a) (mmm ,3 i h NW3: MSQM-qﬁl‘ gmgqu ' EW' \dﬁ QM «Ci/2;;anth mi“ 53 79M (3Uch :1 a my 2W (1 ‘ ﬁ‘wai’iﬂggmaﬂﬂ‘a vugﬁﬁ.%3M 3/) Sigwﬂhﬁv _. -‘ :5 , a, K Mg .. ,_ * ,. a t 3-: _ 3 Mi Wag/ii ‘1 E 3: C > A) ncsfﬁﬁ mac 02 3g 75) May-0112: wquamm ‘3) :x&e§x\l\$, g‘wkz u; i i g 2 “Q “yikzeﬂ 3+. 2* , w «- 6‘” ~® M m “7- ” 1 E I '34» “m ﬁtg t3 4-1 ez‘tg 5 ~ E 2 5 0 .... m 6&3} 1-: g _ Z 'a ﬁLewﬂ <33“... 1 ag+q Math 2025, Quiz #3 (Fan 2003) Name: SoMQﬁhs Reoali that an inner product on R” is'given by ((321, . . . ,Lvn), (yl, . . . 4:71)) 2 my; + . . _ + ssnyn. The length or norm of a vector u 2: (331, . . . ,m) is the real number %’(\$l=---a\$nmﬂ \/\$§+\$§+-~+33i= Wm) Inner product on functiono on [m bf (piecwise continuous: oontinous, etc.) is given by (f> g) n f: f(t)g(t) din The norm is b m z m: 1) anlua’ce the foiiowing inner products: a) 11 x (1.,2ju—1),v :(—1,1,1), (11302 O‘ m.— m (WU): l-C—ﬂ+2-E+C-D'i= -l+2-1:-a b)(L:{),b:1,‘f(t).xﬁ2+ljandg(t)2mt+2' (fag): jag/{Z £C€x}5£ﬁ):C-£L+l)(2 H‘s} :2£2+2*~€3-_t, (€13):- Slatzuklmtg... tau ,,._ . ' a o :«ft3+2tm~,iiﬁ~§1ang~+2m§i mi , gum/“24: ﬂ: 2.3/72 /2 2) Evaluate the noun of the following vectors: a) u : (1,»—2,2,1), = /éﬁ7 ixullrmr§i+w7731/m b) a 1: 0,35 : 1,1" Magi/2) “ X[1/2,l): 2 I 2. "1m , r 2 £5“ ‘7 View“) " “mu/o“ 7‘ 2:21) C” “(Lea 1)“) = We 1) ‘9) 3) Which of the following ‘ i1; Mmys are orthogonal?‘) g; wig/«)6: .1: 1 \$94 a: {:3 1; ’ a) 11:: (1,—1), v m: (1,1). i ‘r’ (LA M = t ~g : o ' b) omU,b~—:1,f(i)xtandg(f)=2m—3t. ﬁ‘reg I £66306.) ~ élﬁwgta‘ k , 2 2 3 ."2'" l «.l a: c) (fia)-— gal-bsgtdbﬁm ﬁwt a Math 2025, Homework 3, due Thursday, Nov 14, 9.10 AM Name: Consider the vector Space V of real valued piecewise continuous functions on {0,1) with the inner product < ﬁg >: f; f{t)g(t) dt. Lot 90%) 2 90(22: — j) as usuaiéy. Let for) 2 t2, g{t) : t, and Mt) : 2t — 3t? 1) Evaluate the inner products: 8») < fyg >3 b) < 9,903 >3 c) < 9, 90% >3 d} < f,h >= e) < huﬁ >2 2) F End the norm of the following functions: a) m z 10) HQH = C) M” = d) W e 3) Consider the subspace V1 2 {30993 +8190§ E V f 30,51 6 R}. Let 1 , 1 : 1:510:90? (éigl‘f‘pi ‘ a) Draw the graph of p and g. 1)) Evaluate 339 -p\ 2 c) Show that if q 6 V1 then 9 mp i q. 19 Math 2025, Problems / Inner products Recall that an inner product on R” is given by < (51:1,, . . . ,zrn), (3,11, . . . ,yn) >: 221311 + . . . + xnyn. The length or norm of a vector E) 2 (3:1,. . . )an) is the real number H(:z:1,...,:r:n)ll:«/\$§+3:§+...+33%: V<3€ﬁ§> 1) Evaluate the inner product of the following vectors in lit”: a) < (1,e,-—3),(2,1,3) >x1><2+0>< 1m3><3==2~u92w7 b) <(2,2;w1,-~1)?(Z,1,2,2) >22>< i+2><1—1>< 2e—1>< 2:0 c)<{1,273,4,5),(0,2i5,3,6)>21><G+2><2+3><5+4><3+5><Gzﬁi 2) Find the norm of the following vectors: a) “(1,3,1)He 2 «n: 3. 317 b) ||(w1,2,3?5)n 2 war)? +22 +32 +52 2 M39 2 6.245 Two non—zero vectors are called perpendicular or orthogonal if the inner product < "13?, m3"? >= 0. 3) Which of the following vectors are perpendicular to each other? (1:0)? (0 — 2). Orthogonal b) (110,1), (~l,2, 1) Orthogonal c) (2, ~l.70), (l, l, 3) Not orthognal (inner product = 2 m l = 1) An inner product on C” is given by < (21, . . . ,3”), (11)], . . . awn) >2 2110—1 + ~1- znwn where :17 — 13y. The norm of “z? m (21,...,zn) is given by denotes complex conjugation n+1 < . y 3 = x/l21[2+...+lzn!2 = “l E? Z >. Two non—zero vectors E} and 3? are perpenticuiar or orthogonal if < Mi"), “57) >: 0. 4) Evaluate the inner product of the following vectors in C”: a) < (1,i+2‘)2i)5(—1,1—332+3’) >: 1><(—1)+(1+3')><(1 —1:)+21;><(2 +1) : —1+1+22‘+2r+2 m 2+43‘ b)<(i123,1+4i),{1m1;,3mi,3) >=r><(1—-r)+2r><(3 —-i)+—(1+41')><3 mé—1~%~6tm2+3+12i: 2193' 5) Which of the folowing two vectors are orthogonal to each other: a) (1,1531), (1,1+?§,1) : 1x1+1><(1+3)m3x1=1+1711~1§= 2w2i not orthogonal: b) (1+«i,i, 1—21), (1—3; 1, —1—r): (1+r)><(1 m 1L)+i-><1+(Zwi)><m =1+2iw1+3w2 :3 W2+3i not orthognal 6) Find the norm of the following vectors in C”: a) “(1 +122 — 375i)“ w W 2 4.0 b)||(t,1,—1)llm mm «\$21.73? WLet f : [on b] me C be a continuous function. Then f can be written as f : ' ML 11 and 11 are continuous real valued functions on [(1, bl Then integral of f over [a: b] is then deﬁned J. ’L’) + tote) where Eras fabﬂw) d3: : (£3: +i/j dx ...
View Full Document

## This note was uploaded on 11/23/2011 for the course MATH 2025 taught by Professor Staff during the Spring '08 term at LSU.

### Page1 / 5

2025pr5 - Math 2025 Quiz #3 (Fall 2004) Name: Inner product...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online