Thermodynamics filled in class notes_Part_54

# Thermodynamics filled in class notes_Part_54 - 115 4.3...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 115 4.3. LEGENDRE TRANSFORMATIONS Now since ∂h ∂s ∂h ∂P = T, (4.121) = v, (4.122) P s one has P Po T = To v = RTo Po R/cP s cP , exp exp s cP R/cP −1 P Po (4.123) . (4.124) Dividing Eq. (4.123) by Eq. (4.124) gives T v Pv = = P , R RT , (4.125) (4.126) which is the thermal equation of state. Substituting from Eq. (4.123) into the canonical equation for h, Eq. (4.118), one also ﬁnds for the caloric equation of state h h cP T + ( h o − cP T o ) , = = cP (T − To ) + ho , (4.127) (4.128) which is useful in itself. Substituting in for T and To , h = cP P v Po vo − R R + ho . (4.129) Using, Eq. (4.78), h ≡ u + P v , we get u + P v = cP Pv Po vo − R R + uo + Po vo . (4.130) So u= u= u= u= u= u= cP cP − 1 Pv − − 1 Po vo + uo , R R cP − 1 (P v − Po vo ) + uo , R cP − 1 (RT − RTo ) + uo , R (cP − R) (T − To ) + uo , (cP − (cP − cv )) (T − To ) + uo , cv ( T − T o ) + u o . (4.131) (4.132) (4.133) (4.134) (4.135) (4.136) So one canonical equation gives us all the information one needs. Often, it is diﬃcult to do a single experiment to get the canonical form. CC BY-NC-ND. 18 November 2011, J. M. Powers. 116 4.4 CHAPTER 4. MATHEMATICAL FOUNDATIONS OF THERMODYNAMICS Heat capacity Recall that cv = cP = ∂u ∂T ∂h ∂T , (4.137) . (4.138) v P Then perform operations on the Gibbs equation du = T ds − P dv, ∂u ∂s =T , ∂T v ∂T v ∂s cv = T . ∂T v (4.139) (4.140) (4.141) Likewise, dh = T ds + vdP, ∂s ∂h =T , ∂T P ∂T P ∂s cP = T . ∂T P (4.142) (4.143) (4.144) One ﬁnds further useful relations by operating on the Gibbs equation: du = T ds − P dv, ∂u ∂s =T − P, ∂v T ∂v T ∂P − P. =T ∂T v (4.145) (4.146) (4.147) So one can then say u = u(T, v ), ∂u ∂u dT + du = ∂T v ∂v ∂P = cv dT + T ∂T (4.148) dv, (4.149) T v −P dv. (4.150) For an ideal gas, one has ∂u ∂v =T T ∂P ∂T v = 0. CC BY-NC-ND. 18 November 2011, J. M. Powers. −P =T R v − RT , v (4.151) (4.152) ...
View Full Document

## This note was uploaded on 11/26/2011 for the course EGN 3381 taught by Professor Park-sou during the Fall '11 term at FSU.

Ask a homework question - tutors are online