Thermodynamics filled in class notes_Part_96

Thermodynamics filled in class notes_Part_96 - 199 5.6 SOME...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 199 5.6. SOME CONSERVATION AND EVOLUTION EQUATIONS Now take Eq. (4.387) and perform some straightforward operations on it: dS |U,V N 1 − T = ≥ 0, µi dni i=1 (5.460) irreversible entropy production U,V =− V T =− dS dt V T V =− T N µi dni 1 ≥ 0, dt V (5.461) µi dρi ≥ 0, dt (5.462) i=1 N i=1 N β µi νi aT exp i=1 N −E RT ≡k (T ) ν′ ρk k k =1 forward reaction ≡r =− V T N N ′ νk ρk i=1 1− 1 1− Kc µi νi k (T ) V = − k (T ) T ν′ ρk k k =1 ρkνk ≥ 0,(5.463) k =1 N reverse reaction N ρkνk N k =1 N 1 Kc 1 1 − Kc ≥ 0, k =1 (5.464) N ρkνk µi νi i=1 k =1 ≥ 0, (5.465) =−α Change the dummy index from k back to i, V = k (T ) T N ρi i=1 ′ νi 1 1− Kc N ρ i νi i=1 α ≥ 0, (5.466) V r α, T α dζ = . T dt (5.467) = (5.468) Consider now the affinity α term in Eq. (5.466) and expand it so that it has a more useful form: N α=− i=1 N µi νi = − =− g i νi , i=1 N g o + RT ln T,i i=1 (5.469) Pi Po νi , (5.470) CC BY-NC-ND. 18 November 2011, J. M. Powers. 200 CHAPTER 5. THERMOCHEMISTRY OF A SINGLE REACTION N =− N g o νi T,i i=1 = ∆G −RT νi Pi Po ln i=1 , o N −∆Go = RT RT − i=1 =ln KP N ln KP − ln = RT i=1 N 1 ln + ln KP i=1 = −RT = −RT ln = −RT ln = −RT ln N 1 KP Po RT i=1 PN i=1 (5.472) (5.473) , νi Pi Po , (5.474) νi Pi Po , νi Kc 1 Kc νi Pi Po , νi Pi Po ln (5.471) N (5.475) νi ρi RT Po i=1 , N ρi νi (5.476) . (5.477) i=1 Equation (5.477) is the common definition of affinity. Another form can be found by employing the definition of Kc from Eq. (5.270) to get Po RT α = −RT ln − PN i=1 o ∆G + ln RT = −RT νi exp Po RT Po RT = −∆Go − RT ln − − N ∆Go RT PN i=1 PN ρi νi , (5.478) i=1 νi N ρi νi , (5.479) i=1 N i=1 νi ρi νi . (5.480) i=1 To see clearly that the entropy production rate is positive semi-definite, substitute Eq. (5.477) into Eq. (5.466) to get dS dt U,V V = k (T ) T N ρi 1 1− Kc ′ νi i=1 N ρi νi i=1 −RT ln 1 Kc N ρi νi i=1 ≥ 0, (5.481) N = −RV k (T ) ρi i=1 ′ νi 1− CC BY-NC-ND. 18 November 2011, J. M. Powers. 1 Kc N ρ i νi i=1 ln 1 Kc N ρi νi i=1 ≥ 0. (5.482) ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online