Econometrics-I-14

Econometrics-I-14 - Applied Econometrics William Greene...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Applied Econometrics William Greene Department of Economics Stern School of Business
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Applied Econometrics 14. Nonlinear Regression and Nonlinear Least Squares
Background image of page 2
Nonlinear Regression What makes a regression model “nonlinear?” Nonlinear functional form?     Regression model: y i   =  f(  x i  ,  β  )  +   ε i Not necessarily:          y i  = exp( α ) +  β 2 *x i  +  ε i                                 β  = exp( α )                                y i   = exp( α )x i β exp( ε i )     is “loglinear” Models can be nonlinear in the functional form of the  relationship between y and x, and not be nonlinear for  purposes here. We will redefine “nonlinear” shortly, as we proceed.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Nonlinear Least Squares Least squares: Minimize wrt  β  ½  Σ i  [y i   - f( x i , β )] 2                                           = ½  Σ i  e i 2 First order conditions:     ½ Σ i [y i - f( x i , β )] 2  ]/ ∂β             = ½ Σ i (-2)[y i - f( x i , β )]  f( x i , β )/ ∂β           =  - Σ i  e i   x i 0   0 (familiar?) There is no explicit solution,  b  = f( data ) like LS. (Nonlinearity of the FOC defines nonlinear model)
Background image of page 4
Example How to solve this kind of set of equations:  Example,            y i   =   β 0 +  β 1x i β 2  +  ε i .            [ ½ Σ i  e i 2 ]/ ∂β 0  =  Σ i  (-1) (y i  -  β 0 -  β 1x i β 2 )  1             =  0            [ ½ Σ i  e i 2 ]/ ∂β 1  =  Σ i  (-1) (y i  -  β 0 -  β 1 x i β 2 ) x i β 2           =  0            [ ½ Σ i  e i 2 ]/ ∂β 2  =  Σ i  (-1) (y i  -  β 0 -  β 1 x i β 2 β 1 x i β 2 lnx i  =  0 Nonlinear equations require a nonlinear solution.  We’ll return to that  problem shortly. This defines a nonlinear regression model.  I.e., when the first order  conditions are not linear in  β . (!!!) Check your understanding.  What does this produce if f(  x i  ,  β  ) =  x i ′ β ?  (I.e., a linear model)
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
The Linearized Regression Model Linear Taylor series:    y  = f( x i , β )  +   ε .    Expand the regression around some point,  β 0 . f(
Background image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/23/2011 for the course ECON B30.3351 taught by Professor Professorw.greene during the Spring '10 term at NYU.

Page1 / 24

Econometrics-I-14 - Applied Econometrics William Greene...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online