Econometrics-I-16

Econometrics-I-16 - Applied Econometrics William Greene...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Applied Econometrics William Greene Department of Economics Stern School of Business
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Applied Econometrics 16. Applications of the Generalized Regression Model
Background image of page 2
Two Step Estimation of the Generalized Regression Model     Use the Aitken (Generalized Least Squares -  GLS) estimator with an estimate of  1.     is parameterized by a few estimable  parameters.  Examples, the heteroscedastic  model 2.  Use least squares residuals to estimate the  variance functions 3.  Use the estimated   in GLS - Feasible GLS,  or FGLS
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
General Result for Estimation When Is Estimated True GLS uses   [ X ′ Ω   -1  X ] X ′ Ω   -1  y    which  converges in probability to  β . We seek a vector which converges to the same  thing that this does.   Call it FGLS, based on    [ X      -1  X ] X     -1  y     
Background image of page 4
FGLS Feasible GLS is based on finding an estimator which has the same properties as the true GLS. Example Var[ ε i ] = σ 2 [Exp( γ ′ z i )]2. True GLS would regress y/[ σ Exp( γ ′ z i )] on the same transformation of x i . With a consistent estimator of [ σ , γ ], say [s, c ], we do the same computation with our estimates. So long as plim [s, c ] = [ σ , γ ], FGLS is as good as true GLS.
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
FGLS vs. Full GLS VVIR    To achieve full efficiency, we do not need an  efficient estimate of the parameters in  , only a  consistent one.
Background image of page 6
Heteroscedasticity Setting:   The regression disturbances have unequal variances, but are  still not correlated with each other: Classical regression with hetero-(different) scedastic (variance)  disturbances.     y i   =   β′ x i  +  ε i ,  E[ ε i ]  =  0,  Var[ ε i ]  =   σ 2   ϖ i ϖ i  > 0.   The classical model arises if  ϖ i  = 1. A normalization:   Σ i   ϖ i  = n.  Not a restriction, just a scaling that is  absorbed into  σ 2 . A characterization of the heteroscedasticity:  Well defined estimators  and methods for testing hypotheses will be obtainable if the  heteroscedasticity is “well behaved” in the sense that ϖ i   /  Σ i   ϖ i     0  as  n    .   I.e., no single observation becomes dominant. (1/n) Σ i   ϖ i     some stable constant.   (Not a probability limit as such.)
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Implications for conventional estimation technique  and hypothesis testing: 1 .  b  is still unbiased.  Proof of unbiasedness did  not rely on homoscedasticity 2.  Consistent?  We need the more general proof.   Not difficult. 3.  If plim 
Background image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 43

Econometrics-I-16 - Applied Econometrics William Greene...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online