This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: (c) A sequence with subsequences converging to each of the integers. (d) A sequence ( a n ) so that ( a n ) converges, but ∞ X n =1 a n diverges. 7. Prove or give a counterexample. (a) If ( a n ) converges to zero, then for any b , ( a n + b ) converges to b . (b) If ( a n ) is monotone increasing, then it is bounded. (c) If b k is a sequence of positive integers, then a n = n X k =1 b k is a sequence monotone increasing. 8. State the following theorems and properties and their negations. (a) Monotone Convergence Theorem. (b) Archimedean property. (c) Nested Interval Property. (d) Cauchy Theorem. 9. State the following deﬁnitions and their negations. Give an example, and a nonexample for each one. (a) A Cauchy sequence. (b) The supremum of a set. (c) A nested interval. (d) A convergent series. 2...
View
Full
Document
This note was uploaded on 11/27/2011 for the course MCH 108 taught by Professor Penelopekirby during the Fall '08 term at FSU.
 Fall '08
 PenelopeKirby

Click to edit the document details