This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Lecture 2: 09/8/11 note: text in red refers to the textbook, 9 th edition extended. 1. Average Velocity and Speed section 24 2. Instantaneous velocity  section 25 3. Derivatives The average velocity of a particle between time t and t+dt is () ( ) () ( ) As the time interval dt becomes smaller, you get a more accurate answer for the velocity at time t. The instantaneous velocity (or simply, velocity at time t) is obtained in the mathematical limit where the time dt goes to zero: () ( ) () ( ) () You can use this definition of the derivative to calculate the derivative of functions. In the class we will mostly use the following results (and other trig functions). To a lesser extent: These formulae can all be derived from the limit formula for the derivative. Please make sure you are These formulae can all be derived from the limit formula for the derivative....
View
Full
Document
 Spring '11
 DODD

Click to edit the document details