s11week05

# s11week05 - Math 205 Spring 2011 Homework 5 due Feb 21...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 205, Spring 2011 Homework 5: due Feb 21 Chapter 3, Section 4; Chapter 4, Sections 1, 2. Week 5: 4.1, 4.2: R n and Vector Spaces ———– 1. Vector addition; scalar multiplication in R 2 . Vectors are vectorx = ( x, y ) , with x, y real numbers. ( x 1 , y 1 ) + ( x 2 , y 2 ) = ( x 1 + x 2 , y 1 + y 2 ). parallelogram law: (2 , 1) + (1 , 4) = (3 , 5) (picture!) k ( x, y ) = ( kx, ky ) , scaling factor 3(2 , 1) = (6 , 3);- 1 2 (2 , 1) = (- 1 ,- 1 2 ) . (sketch) zero vector: vector 0 = (0 , 0) . additive inverse:- vectorx =- ( x, y ) = (- x,- y ) . distributive rules (2) ———- standard unit vectors: vector i = (1 , 0) , vector j = (0 , 1) . Linear combination property: vectorx = ( x, y ) = ( x, 0) + (0 , y ) = x vector i + y vector j. R 3 : vectorx + vector y, k · vectorx, vector 0 = (0 , , 0);- vectorx =- ( x, y, z ) = (- x,- y,- z ) . standard unit vectors vector i, vector j, vector k. vectorx = ( x, y, z ) = ( x, , 0) + (0 , y, 0) + (0 , , z ) = x vector i + y vector j + z vector k. 2 R n : vectorx + vector y = ( x 1 , x 2 , . . . , x n ) + ( y 1 , y 2 , . . . , y n ) = ( x 1 + y 1 , . . . , x n + y n ) . k · vectorx = k ( x 1 , x 2 , . . . , x n ) = ( kx 1 , . . . , kx n ) vector 0 = (0 , , . . . , 0) ,- vectorx =- ( x 1 , x 2 , . . . , x n ) = (- x 1 ,- x 2 , . . . ,- x n ) ....
View Full Document

{[ snackBarMessage ]}

### Page1 / 6

s11week05 - Math 205 Spring 2011 Homework 5 due Feb 21...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online