natural deduction ex2 - 1. (K P) v (K Q) 2. P ~K / Q v T 3....

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1. (K P) v (K Q) 2. P ~K / Q v T 3. K (P v Q) 4. K 5. ~~K 6. ~P 7. (P v Q) K 8. P v Q 9. Q 10. Q v T 1. (K P) v (K Q) 2. P ~K / Q v T 3. K (P v Q) 1, Dist 4. K 3, Simp 5. ~~K 4, DN 6. ~P 2, 5, MT 7. (P v Q) K 3, Com 8. P v Q 7, Simp 9. Q 6, 8, DS 10. Q v T 9, Add 1. E v ~(D v C) 2. (E v ~D) C / E 3. E v (~D ~C) 4. (E v ~D) (E v ~C) 5. E v ~D 6. C 7. (E v ~C) (E v ~D) 8. E v ~C 9. ~C v E 10. ~~C 11. E 1. E v ~(D v C) 2. (E v ~D) C / E 3. E v (~D ~C) 1, DM 4. (E v ~D) (E v ~C) 3, Dist 5. E v ~D 4, Simp 6. C 2, 5, MP 7. (E v ~C) (E v ~D) 4, Com 8. E v ~C 7, Simp 9. ~C v E 8, Com 10. ~~C 6, DN 11. E 9, 10, DS 1. ~(~E ~N) T 2. G (N v E) / G T 1. ~(~E ~N) T 2. G (N v E) / G T 3. (~~E v ~~N) T 1, DM 4. (E v N) T 3, DN 5. (N v E) T 4, Com 6. G T 2, 5, HS 1. ((I v M) v G) ~G 2. M v G / M 1. ((I v M) v G) ~G 2. M v G / M 3. (M v G) v I 2, Add 4. I v (M v G) 3, Com 5. (I v M) v G 4, Assoc 6. ~G 1, 5, MP 7. G v M 2, Com 8. M 6, 7, DS 1. ~(A G) 2. ~(A E) 3. G v E / ~(A F) 1. ~(A G) 2. ~(A E) 3. G v E / ~(A F) 4. ~A v ~G 1, DM 5. ~A v ~E 2, DM 6. (~A v ~G) (~A v ~E) 4, 5, Conj 7. ~A v (~G ~E) 6, Dist 8. ~A v ~(G v E) 7, DM 9. ~(G v E) v ~A 8, Com 10. ~~(G v E) 3, DN 11. ~A 9, 10, DS 12 ~A v ~F 11, Add 13. ~(A F) 12, DM Translate and prove If women are by nature either p assive or u ncompetitive, then it is not the case that there are l awyers who are women. If men are by nature either i nsensitive or w ithout the ability to...
View Full Document

Page1 / 36

natural deduction ex2 - 1. (K P) v (K Q) 2. P ~K / Q v T 3....

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online