Luonggiac-Chuong7

# Luonggiac-Chuong7 - C HNG VII P HNG TRNH L N G GIA C CH A...

This preview shows pages 1–5. Sign up to view the full content.

CHÖÔNG VII PHÖÔNG TRÌNH LÖÔÏNG GIAÙC CHÖÙA CAÊN VAØ PHÖÔNG TRÌNH LÖÔÏNG GIAÙC CHÖÙA GIAÙ TRÒ TUYEÄT ÑOÁI A) PHÖÔNG TRÌNH LÖÔÏNG GIAÙC CHÖÙA CAÊN Caùch giaûi : AÙp duïng caùc coâng thöùc A 0B AB 0 A BA ≥≥ ⎧⎧ =⇔ ⎨⎨ B = = ⎩⎩ 2 B0 A B = Ghi chuù : Do theo phöông trình chænh lyù ñaõ boû phaàn baát phöông trình löôïng giaùc neân ta xöû lyù ñieàu kieän B baèng phöông phaùp thöû laïi vaø chuùng toâi boû 0 caùc baøi toaùn quaù phöùc taïp. Baøi 138 : Giaûi phöông trình ( ) 5cos x cos2x 2sin x 0 * −+= () * 2sin x ⇔− = 2 sin x 0 4sin x −= ( 22 sin x 0 5cosx 2cos x 1 4 1 cos x −− = ) = 2 sin x 0 3 0 +− sin x 0 1 cosx 3 loa ïi 2 =∨ = π =± + π π ⇔= −+ π∈ ± ± sin x 0 xk 2 , k 3 2 , k 3 Baøi 139 333 3 s i nx c o sx s i nx c o tg x c o sx t g x 2 s i n2 x ++ + =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Ñieàu kieän : cos x 0 sin 2x 0 sin x 0 sin 2x 0 sin 2x 0 sin 2x 0 ≠⇔ > ⎨⎨ Luùc ñoù : () 332 2 * s i nxc o sxs i nx c o s xc o sx s i n x 2 s i n 2 x ⇔++ + = ( ) 22 sin x sin x cos x cos x cos x sin x 2sin 2x ⇔+ ++ = ( ) sin x cos x sin x cos x 2sin 2x + = 2 sin x cos x 0 sin x cos x 2sin 2x +≥ += sin x 0 2sin x 0 4 4 sin2x 1 nha än do sin2x 0 1 sin 2x 2sin 2x ⎧π ⎛⎞ ⎪⎪ ⎜⎟ ⇔⇔ ⎝⎠ = > ππ π =+ π∈ π ∨= + π ⎩⎩ ±± sin x 0 sin x 0 44 5 xk , k xm 2 x m 2 l o a ï i , m 4 π ⇔=+ π ∈ ± 2 , m 4 Baøi 140 : Giaûi phöông trình π 2 1 8 sin 2x.cos 2x 2 sin 3x * 4 + Ta coù : (*) sin 3x 0 4 1 8sin 2x cos 2x 4 sin 3x 4 ⎪⎝ π + π = + sin 3x 0 4 14 s i n 2 x1c o s 4 x 21c o s ( 6 x ) 2 ( sin 3x 0 4 1 4 sin 2x 2 sin 6x sin 2x 2 1 sin 6x = + ) = = +π ∨ = +π ∈ ± sin 3x 0 sin 3x 0 15 sin 2x x k x k , k 21 2 1 2
So laïi vôùi ñieàu kieän sin 3x 0 4 π ⎛⎞ + ⎜⎟ ⎝⎠ Khi x k thì 12 π •= + π sin 3x sin 3k cos k 42 ππ += + π = π () ( ) = ⎢ 1 , neáu k chaün nhaän 1, neáu k leû loaïi π + π 5 Khi x k thì 12 π + π = + π 3 sin 3x sin 3k sin k 2 ( ) = 1, neáu k chaün loaïi 1, neáu k leû nhaän Do ñoù =+π =+ + π ± 5 *x m 2 x 2 m 1 , m 12 12 Baøi 141 : Giaûi phöông trình 1s i n 2 x 1s i n 2 x 4cosx * sin x −+ + = Luùc ñoù : * 1 sin 2x 1 sin 2x 2sin 2x ⇔− ++ = ( hieån nhieân sinx = 0 khoâng laø nghieäm , vì sinx =0 thì VT = 2, VP = 0 ) 22 2 2 1 sin 2x 4sin 2x sin 2x 0 +− = 1 sin 2x 2sin 2x 1 sin 2x 0 −= 242 2 1 sin 2x 4sin 2x 1 1 sin 2x 2 sin 2x 0 ⇔≥ + sin 2x 4 sin 2x 3 0 1 sin 2x 2 =∨ = 33 sin 2x sin 2x 2 sin 2x 2 3 sin 2x 2 ⇔=

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
ππ = = ± 2 2x k2 2x k2 , k 33 ⇔ = +π ∨ = +π ∈ ± xk , k 63
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 11/26/2011 for the course MATH 1002 taught by Professor Chuck during the Spring '11 term at University of Western States.

### Page1 / 13

Luonggiac-Chuong7 - C HNG VII P HNG TRNH L N G GIA C CH A...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online