Parabolic Problem2010

# Parabolic Problem2010 - 10/29/2010 Parabolic Problem...

This preview shows pages 1–6. Sign up to view the full content.

10/29/2010 Math Modeling II (Fall 2009, Xin Li) 1 Parabolic Problem Chapter 15, Section 1 Classification of PDEs y General form of linear second-order PDEs with two independent variables 0 g fu eu du cu bu au = + + + + + + y Linear PDEs: a, b, c,….,g = f(x,y) only y x yy xy xx < = > roots) complex (2 Elliptic , 0 ac 4 b root) double (1 Parabolic , 0 ac 4 b roots) real (2 Hyperbolic , 0 ac 4 b 2 2 2 y We will treat the model equations (Heat equations, …)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
10/29/2010 Math Modeling II (Fall 2009, Xin Li) 2 Heat Equation: Parabolic PDE y Heat transfer in a one-dimensional rod x = 0 x = a a x f(x), ) u(x, T t a, x t u x u c < < = < < = 0 0 0 0 ; 2 2 g 1 (t) g 2 (t) T t , (t) g u(a,t) (t) g ,t) u( = = 0 0 2 1 9 10 Discretize the solution domain in space and time with h = Δ x and k = Δ t t 2 3 4 5 6 7 8 0 1 01234567891 0 Time ( jindex ) space ( i index ) x
10/29/2010 Math Modeling II (Fall 2009, Xin Li) 3 Initial and Boundary Conditions 9 10 Explicit Euler method 3 4 5 6 7 8 u(0, t) = g 1 (t) u(a, t) = g 2 (t) 0 1 2 01234567891 0 Initial conditions : u(x,0) = f(x) Heat Equation y Finite-difference (i,j+1) u(x,t) t t j+1 (i,j) (i+1,j) (i-1,j) x x t x x i x t j i i+1 i-1 ) 2 ( ) ( 1 , 1 , , 1 2 , 1 , j i j i j i xx j i j i t u u u h c cu u u k u + + + = = Forward-difference Central-difference at time level j

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
10/29/2010 Math Modeling II (Fall 2009, Xin Li) 4 Explicit Method y Explicit Euler method for heat equation = = Δ = ih n a x h i x , / y Rearrange = = Δ = jk m T t k j t , / ) u u 2 u ( h c ) u u ( k 1 cu u j , 1 i j , i j , 1 i 2 j , i 1 j , i xx t + + + = = j i j i j i j i j i u u u h ck u u , 1 , , 1 2 , 1 , ) 2 ( + + + + = ck Δ j i j i j i u u u , 1 , , 1 ) 2 1 ( + + + = σ 2 2 x t c h Δ = = 5 . 0 0 < Stability: Explicit Euler Method y Stable j i j i j i j i u u u u , 1 , , 1 1 , ) 2 1 ( + + + + = y Unstable (negative coefficients) j i j i j i j i j i j i j i j i j i j i j i j i j i j i j i u u u u u u u u u u u u u u u , 1 , 1 1 , , 1 , , 1 1 , , 1 , , 1 1 , , 1 , , 1 1 , 5 . 0 5 . 0 5 . 0 4 . 0 2 . 0 4 . 0 4 . 0 1 . 0 8 . 0 1 . 0 1 . 0 01 . 0 98 . 0 01 . 0 01 . 0 + + + + + + + + + = = + + = = + + = = + + = = j i j i j i j i j i j i j i j i j i j i j i j i u u u u u u u u u u u u , 1 , , 1 1 , , 1 , , 1 1 , , 1 , , 1 1 , 100 199 100 100 10 19 10 10 1 + + + + + + + = = + = = + = =
10/29/2010 Math Modeling II (Fall 2009, Xin Li) 5 Hands Hands-on Example on Example: : Explicit Explicit Method Method y Heat Equation (Parabolic PDE) 40 0 2 u(x,0) 1 x 0 ; + = = xx t x cu u y Assume c = 0.5, h = 0.25, k = 0.05 60 ) , 1 ( , 20 t) u(0, 2 = = t t e t u e 2 12 34 0 20 + 40 x 60e -2t 20e -t 0 1 Example (continued) y Explicit Euler method h ck 2 2 2 1 4 . 0 ) 25 . 0 ( ) 05 . 0 )( 5 . 0 ( + + = = = σ y First step: t = 0.05 j i j i j i j i j i j i j i u u u u u u u , 1 , , 1 , 1 , , 1 1 , 4 . 0 2 . 0 4 . 0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## Parabolic Problem2010 - 10/29/2010 Parabolic Problem...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online