Parabolic Problem2011

Parabolic Problem2011 - 10/13/2011 Math Modeling II (Fall...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 10/13/2011 Math Modeling II (Fall 2009, Xin Li) 1 15.1 Parabolic Problem Finite Difference Method Classification of PDEs General form of linear second-order PDEs with two independent variables Linear PDEs: a, b, c,.,g = f(x,y) only We will treat the model equations (Heat equations, ) g fu eu du cu bu au y x yy xy xx roots) complex (2 Elliptic , ac 4 b root) double (1 Parabolic , ac 4 b roots) real (2 Hyperbolic , ac 4 b 2 2 2 10/13/2011 Math Modeling II (Fall 2009, Xin Li) 2 Heat Equation: Parabolic PDE Heat transfer in a one-dimensional rod T t , (t) g u(a,t) (t) g ,t) u( a x f(x), ) u(x, T t a, x t u x u c ; 2 1 2 2 x = 0 x = a g 1 (t) g 2 (t) 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Discretize the solution domain in space and time with h = x and k = t Time ( j index ) space ( i index ) x t 10/13/2011 Math Modeling II (Fall 2009, Xin Li) 3 Initial and Boundary Conditions 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Initial conditions : u(x,0) = f(x) u(0, t) = g 1 (t) u(a, t) = g 2 (t) Explicit Euler method Heat Equation Finite-difference (i,j) (i+1,j) (i-1,j) (i,j+1) u(x,t) x x t t x i x i+1 x i-1 t j t j+1 ) 2 ( ) ( 1 , 1 , , 1 2 , 1 , j i j i j i xx j i j i t u u u h c cu u u k u Forward-difference Central-difference at time level j 10/13/2011 Math Modeling II (Fall 2009, Xin Li) 4 Explicit Method Explicit Euler method for heat equation Rearrange jk m T t k ih n a x h j i t , / x , / ) u u 2 u ( h c ) u u ( k 1 cu u j , 1 i j , i j , 1 i 2 j , i 1 j , i xx t j i j i j i j i j i j i j i j i u u u u u u h ck u u , 1 , , 1 , 1 , , 1 2 , 1 , ) 2 1 ( ) 2 ( 2 2 x t c h ck 5 . Stability: Explicit Euler Method Stable Unstable (negative coefficients) j i j i j i j i u u u u , 1 , , 1 1 , ) 2 1 ( j i j i j i j i j i j i j i j i j i j i j i j i j i j i j i u u u u u u u u u u u u u u u , 1 , 1 1 , , 1 , , 1 1 , , 1 , , 1 1 , , 1 , , 1 1 , 5 . 5 . 5 . 4 . 2 . 4 . 4 . 1 . 8 . 1 . 1 . 01 . 98 . 01 . 01 . j i j i j i j i j i j i j i j i j i j i j i j i u u u u u u u u u u u u , 1 , , 1 1 , , 1 , , 1 1 , , 1 , , 1 1 , 100 199 100 100 10 19 10 10 1...
View Full Document

This note was uploaded on 11/27/2011 for the course MAP 4371 taught by Professor Xli during the Fall '11 term at University of Central Florida.

Page1 / 16

Parabolic Problem2011 - 10/13/2011 Math Modeling II (Fall...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online