This preview shows page 1. Sign up to view the full content.
Unformatted text preview: MIT OpenCourseWare
http://ocw.mit.edu 5.80 SmallMolecule Spectroscopy and Dynamics
Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1987 Problem Set #2
Due March 9, 1987
Readings:
J. I. Steinfeld, pp. 3973, 7779, 92110, 113142
Handouts:
Anharmonic Oscillator, VibrationRotation Interaction
Energy Levels of a Vibrating Rotor
Construction of Potential Curves by the RKR Method
Van Vleck Transformation (Lecture #3 supplement)
(Lecture #23 supplement)
(Lecture #4 supplement)
(after Lecture #2) 1. An atom is in a (3d)2 3 P0 state.
(a) List all L–S–J terms to which an electric dipole allowed transition might occur.
(b) List all twoelectron conﬁgurations into which electric dipole allowed transitions can occur
from (3d)2 3 P0 .
2. J. I. Steinfeld, p. 111, #1.
(a) Write out the electron conﬁgurations for the molecules O+ , O2 , O− , and O2− .
2
2
2
�
�
(b) Determine the ground state term symbols M Λ±,u for O+ , O2 , O− , and O2− . If there are two or
g
2
2
2
more lowlying states, select one as that of the ground state and justify your selection.
3. J. I. Steinfeld, p. 111, #3.
Use the “Gilmore diagrams” provided for O2 , N2 , NO, and H2 :
(a) Sketch the expected lowresolution absorption spectrum to be expected for each of these four
molecules between 1,000 and 10,000 Å.
(b) A photoionization experiment is carried out by shining light on a gas sample placed between
two electrodes. A positive ion current is measured between the cathode and ground. For the
four molecules, what is the longest wavelength of light that would be eﬀective in producing a
measurable ion current (this is called the “photoionization threshold”)?
�
�
(c) The ﬁrst positive bands B3 Πg → A3 Σ+ of nitrogen are observed in an “active nitrogen” dis
u
charge, in which the active species are predominantly ground state N atoms. Suggest a mech
anism for the population of the excited state.
(d) When solutions of hydrogen peroxide and “Clorox” are mixed, a red chemiluminescence near
7,600 Å is observed. What might this be caused by? Problem Set #2 Spring, 1987 Page 2 4. J. I. Steinfeld, p. 143, #5.
The squared “transition moment,” or the probability of transition between two rotational levels in a
linear molecule, may be assumed to depend only on the permanent electric moment of the molecule
and thus to be the same for all allowed pure rotational transitions. In the pure rotational emission
spectrum of H35 Cl gas, lines at 106.0 and 233.2 cm−1 are observed to have equal intensities. What
is the temperature of the gas? The rotational constant B for H35 Cl is known to be 10.6 cm−1 , and the
ratio hc/k has the value 1.44 cm deg.
5. J. I. Steinfeld, p. 143, #6. The harmonic oscillator wave functions for the levels v = 0 and v = 1 are �
�
� a �1/4
−a(r − re )2
ψ0 =
exp
,
π
2
� 3 �1/4
�
�
4a
−a(r − re )2
ψ1 =
Δr exp
,
π
2
in which a is a constant. These functions are orthogonal and normalized to unity.
(a) Show that ψ0 and ψ1 are orthogonal.
(b) Calculate the average value of (r − re )−2 for the state v = 1.
Also calculate Bv (in cm−1 ) for v = 0 and 1. Why is B1 > B0 for a harmonic oscillator? Why is
B1 < B0 for almost all real molecules?
6. J. I. Steinfeld, p. 143, #7.
What would happen to the BirgeSponer extrapolation scheme for a molecular potential correlating
with ionic states of the separated atoms?
7. You are going to use the Van Vleck Transformation (a fancy name for secondorder quasidegenerate
perturbation theory) to solve a coupled harmonic oscillator problem. Consider
H = H0 + H0 + ζ x2 y2
x
y
and let
ω x = ωy .
(a) Given that
�
�
�
n x  x2 n x =
(n x + 1/2)
mω
�
�
�
n x  x 2 n x ± 2 =
[n2 + n x + 1 ± (2n x + 1)]1/2
2mω x
ζ � ≡ b. 4m2 ω3 Problem Set #2 Spring, 1987 Page 3 Construct the H matrix through n = n x + ny = 4. Notice that the matrix factors nicely into an odd n and an even n block.
(b) Apply the Van Vleck transformation to the n = 0, 1, and 2 blocks. Assume that �ω � b.
Be sure to include corrections due to oﬀdiagonal elements with n > 4 basis functions. Your
bookkeeping will be simpliﬁed if you make use of “railroad” diagrams. For example,
√
3 6b
1, 1 �
�
�
�
�
�
�
� 3,1 √
3 6b 1,3 √
3 6b √
3 6b
6b 3,3 6b �
�
�
�
� � � � 1, 1 The diagram places the initial and ﬁnal basis functions at left and right and in the middle
all basis functions that can simultaneously have nonzero matrix elements with both. Above
each line is the actual value of the matrix element. All that remains is to look up the relevant
energy denominators. The correction to the 1, 1; 1, 1 matrix element is (neglecting b terms in
denominators)
54b2 54b2 36b2
−
−
−
.
2�ω 2�ω 4�ω
(c) Now that you have eﬀectively uncoupled the n = 0, 1, 2 blocks from all other blocks, you can
focus your attention individually on these 1 × 1, 2 × 2, and 3 × 3 isolated eﬀective Hamiltonians.
Construct the (2, 0) ± (0, 2) and (1, 0) ± (0, 1) basis functions. This is called a “Wang Transfor
mation”. Can you suggest any physical basis for this additional factorization? You should ﬁnd
that the n = 0 − 2 part of this Hamiltonian is now fully diagonal. Draw an energy level diagram
for n = 0 through 2 which compares your eigenvalues against unperturbed (b = 0) levels. ...
View
Full
Document
This note was uploaded on 11/28/2011 for the course CHEM 5.74 taught by Professor Robertfield during the Spring '04 term at MIT.
 Spring '04
 RobertField
 Mole

Click to edit the document details