This preview shows page 1. Sign up to view the full content.
Unformatted text preview: MIT OpenCourseWare
http://ocw.mit.edu 5.80 SmallMolecule Spectroscopy and Dynamics
Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1976 Problem Set #3
1. (a) Write out the electron conﬁgurations for the molecules O+ , O2 , O− , and O2− .
2
2
2
�
�
−
(b) Determine the groundstate term symbols M Λg,u ± for O+ , O2 , O2 , and O2− . If there are two or more
2
2
lowlying states, select one as that of the ground state and justify your selection. 2. (a) Using symbols appropriate to the separatedatom approximation to a molecular orbital, write the elec
tronic conﬁguration of lowest energy for the diatomic species C2 , NO+ , and S2 .
�
�
(b) Write the term symbols M Λg,u ± for all the electronic states derivable from the conﬁguration of lowest
energy for all three species. Which of these states will have nonzero magnetic moments? 3. Gaseous HCl is normally a 3 : 1 mixture of H35 Cl and H37 Cl. To a high approximation, the rotational energy
levels of such diatomic rotators are
E ( J )(in cm−1 ) = J ( J + 1) B − J 2 ( J + 1)2 D
where B, the rotational constant, is larger by a factor 1.0015 for H35 Cl than for H37 Cl, and the centrifugal
distortion constant D is the same for both molecules within the error of its measurement.
(a) Derive an expression for the separation of the pure rotational absorption lines of H35 Cl and H37 Cl as a
function of J� , the J–value for the upper state (ΔJ = J� − J�� = +1).
(b) What is the spacing in cm−1 of the two lines for which J� = 10?
4. The “transition moment,” or the probability of transition, between two rotational levels in a linear molecule
may be assumed to depend only on the permanent electric dipole moment of the molecule and thus to be the
same for all allowed purerotational transitions. In the purerotational emission spectrum of H35 Cl gas, lines
at 106.0 cm−1 and 233.2 cm−1 are observed to have equal intensities. What is the temperature of the gas? The
rotational constant B for H35 Cl is known to be 10.6 cm−1 , and the ratio hc/k has the value 1.44 cm·deg.
5. What would happen to the BirgeSponer extrapolation scheme for a molecular potential correlating with ionic
states of the separated atoms? 5.76 Problem Set #3 Spring, 1976 page 2 6. The ground state and a lowlying excited electronic state of the BeO molecule have the following properties
Term symbol
Electronic energy, T e /cm−1
ωe /cm−1
ωe xe /cm−1
re /10−8 cm 1 Σ+ 1Π 0
1487.3
11.8
1.33 9405.6
1144.2
8.4
1.46 (Note that the electronic energy T e is the energy from the minimum of one curve to the minimum of the other; this is not
equal to the vibrational origin of the 0 − 0 band.) (a) Construct a Deslandres table of the vibrational band origins of the 1 Π − 1 Σ+ system, for v�� = 0 through
3 and v� = 0 through 5. Which of these vibrational bands would you expect to be the most intense, when
the system is observed in absorption? Comment on the relative intensities that you would expect for the
other bands in your table.
(b) In the rotational structure of the individual vibronic bands in this system, what branches would you
expect to observe? In which branch would you expect to observe a band head? Calculate the transition
in J that will give rise to a line at the band head, and the distance in cm−1 from the band head to the
vibrational band origin.
(c) What would you guess about the MO conﬁgurations corresponding to these two states? (HINT: Note
that BeO is isoelectronic with C2 , so that the MO’s may be expected to be somewhat similar, except that
the gu property will be lost, and the orbitals will be distorted toward the higher nuclear charge of the
Oatom.) Would you suspect the presence of any other excited electronic states below the 1 Π state? If
so, what would its term symbol be?
7. The following bands are observed in the second positive system of nitrogen (units are reciprocal centimeters
corrected to vacuum):
35,522 cm−1
35,453
33,852
33,751
33,583
32,207
32,076
31,878
31,643
30,590
30,438
30,212 29,940 cm−1
29,654
29,010
28,819
28,559
28,267
27,949
27,451
27,226
26,942
26,621
26,274 25,913 cm−1
25,669
25,354
25,003
24,627
24,414
24,137
23,800
23,414
23,016 ��
�
Arrange these in a Deslandres table, and ﬁnd values for ω�� , ωe xe , ω� , and ωe xe . Important Suggestion:
e
e Look at the pattern of bands ﬁrst, before doing anything else. Do any natural groupings seem to suggest 5.76 Problem Set #3 Spring, 1976 page 3 themselves? It may help to draw a “stick spectrum” of the band origins, to scale, in order to pick out these
patterns. Remember that bands having the same Δv fall along diagonals on the Deslandres table.)
Is there any suggestion of a cubic term in either state? If so, derive an expression for the third diﬀerence,
�
�3 Δ3Gv+1/2 , including terms in ωe ye v + 1 in Gv+1/2 , and estimate ωe ye . 2
8. The ﬁrst strong electronic band system of carbon monoxide (the groundstate vibrational frequency of which
is observed at 2140 cm−1 in the infrared) appears in absorption at room temperature at about 1550 Å in the
vacuum ultraviolet. The system shows a progression with a spacing of 1480 cm−1 . The vibronic bands show
a single set of unperturbed P–, Q–, and R–branches degraded to the red. Analysis by combination diﬀerences
of these branches gives B� = 1.61 cm−1 , B�� = 1.93 cm−1 . In each band, the lines nearest the origin are P(2),
e
e
Q(1), and R(0).
(a) Deduce all you can about the two electronic states involved in the transition from these data and your
general knowledge of the properties of carbon monoxide.
(b) Sketch the lower portions of the potential curves in cm−1 for CO, roughly, to scale, from these data [ﬁnd
the harmonic force constant, and use the potential U (r) = 1 k(r − re )2 ]. Use the FranckCondon principle
2
to ﬁnd the strongest vibronic bands in the spectrum.
(c) Interpret the electronic terms of the two states in terms of the most likely MO conﬁgurations of each.
(d) The dipole moment of the ground state of CO is about 0.1 Debye (1 Debye = 10−18 esucm). Show how
an optical Stark eﬀect experiment can be used to ﬁnd the dipole moment of the excited states; estimate
the magnitudes of the splittings for the P(2), Q(1), and R(0) lines, for an applied ﬁeld of 10,000 V/cm (1
statvolt = 300 ordinary volts), and an assumed excitedstate moment of 1.0 Debye.
9. (a) What states arise from the σ2 σ∗, σ2 π, and σπ2 conﬁgurations? (There should be a total of 6 states.)
(b) Write the linear combinations of Slater determinants which correspond to the e–parity components of
each of these states. (There should be a total of 9 component states, hence 9 linear combinations.)
(c) Which of these 9 substates can perturb each other? Make a table specifying the terms in the Hamiltonian
�
�
HElect , HSO , HCoriolis which cause these perturbations.
(d) Calculate all possible nonzero spinorbit perturbation matrix elements between ΛS Σ� Ω JM �e states in
terms of the oneelectron parameters
�
�
a1 ≡ σ∗ ξ�− π
a2 ≡ �σξ�− π�
a3 ≡ �πξ�z π� .
(There will be at least 7 nonzero matrix elements.) 5.76 Problem Set #3 Spring, 1976 page 4 (e) In the absence of substate mixing, between which of these 9 e–parity substates can there exist electric
dipole allowed R or P branch transitions?
(f) Express the relative intensities of the following electric dipole transitions in terms of the oneelectron
�
�
matrix element µ⊥ ≡ σµ− π :
σ2 π 2 Π1/2 → σπ2 2 Σ+
σ2 π 2 Π3/2 → σπ2 2 Σ+
σ2 π 2 Π1/2 → σπ2 2 Σ−
σ2 π 2 Π1/2 → σπ2 2 Δ3/2
σ2 π 2 Π3/2 → σπ2 2 Δ3/2
So there are some semiempirical relationships among isoconﬁgurational transition intensities!
10. (a) Construct the Hamiltonian matrix for a 5 Δ state by evaluating the matrix elements of HROT = B(J−L−S)2
and HSO = AL · S in the Hunds case ‘a’ e/ f (parity) basis.
(b) Construct the matrix of secondorder Van Vleck Transformation corrections to HROT + HSO which results
from the r–dependence of the “constants” Bv and Av . Deﬁne centrifugal distortion parameters
Dv ≡ − � �v B(r)v� � �v�  B(r)v�
v� �v A Dv = 2
A◦ =
v E v − E v� � �vA(r)v� � �v�  B(r)v� E v − E v�
v� �v
� �vA(r)v� � �v� A(r)v� v� �v E v − E v� and express the matrix elements in terms of these three parameters. ...
View
Full
Document
This note was uploaded on 11/28/2011 for the course CHEM 5.74 taught by Professor Robertfield during the Spring '04 term at MIT.
 Spring '04
 RobertField
 Mole

Click to edit the document details