This preview shows page 1. Sign up to view the full content.
Unformatted text preview: MIT OpenCourseWare
http://ocw.mit.edu 5.80 SmallMolecule Spectroscopy and Dynamics
Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1987 Problem Set #3
1. Hund’s Coupling Cases.
(a) Write the case (a) e and f –symmetry 3 × 3 eﬀective Hamiltonian matrices for the 2 Π, 2 Σ+ problem we
have considered in Lecture. Include only the zeroth and ﬁrst order matrix elements of HROT and HSO .
Show that the eﬀective rotational constants for 2 Π3/2 and 2 Π1/2 are B ± B2 /A near the case (a) limit.
(b) Consider the case (b) limit where A � B J . Form the approximate case (b) eigenfunctions for 2 Π as
��
��
��
�
�
ψ = 2−1/2 �2 Π1/2 ± �2 Π3/2
±
and reexpress the full 3 × 3 matrix in this basis.
(i) You will ﬁnd that both of the 2 Π eigenstates follow a BN (N + 1) rotational energy level expression.
Which group of states (E+ , ψ+ ) or (E− , ψ− ) corresponds to N = J + 1/2 and which to N = J − 1/2?
(ii) What is the ΔN selection rule for spinorbit 2 Π ∼ 2 Σ+ perturbations?
(iii) What is the ΔN selection rule for BJ·L 2 Π ∼ 2 Σ+ “L–uncoupling” perturbations?
(c) Consider the case (c) limit for a “ p–complex”. This means that the 2 Π and 2 Σ+ states correspond to
�
�
the λ = 1 and λ = 0 projections of an isolated � = 1 atomic orbital. In this case 2 Π BL+ 2 Σ+ =
�
� B[1 · 2 − 0 · 1]1/2 = 21/2 B. BΠ = BΣ = B, 2 ΠAL+ 2 Σ+ = 21/2 A, AΠ = A. Write the case (c) matrix and
ﬁnd the eigenvalues for EΠ = EΣ = E . What is the pattern forming rotational quantum number when
A � B J ? For each J–value you should ﬁnd two near degenerate pairs of e, f levels above one e, f pair.
What is the splitting of these two groups of molecular levels? How does this compare to the level pattern
(degeneracies and splitting) for a 2 P atomic state?
(d) Consider the case (d) limit for a “ p–complex”. Use the same deﬁnitions of EΠ , EΣ , BΠ , BΣ , AΠ , α, β
as for case (c) but set A = 0. Your transformed case (b) matrix will be helpful here. Show that R is the
pattern forming quantum number by ﬁnding the relation between R and J for each of the six same J , e/ f
eigenvalues. 5.76 Problem Set #3 Spring, 1987 page 2 2. J. I. Steinfeld, p. 193, #2.
The ground state and a lowlying excited electronic state of the BeO molecule have the following properties:
Term symbol
Electronic energy, T e /cm−1
ωe /cm−1
ωe xe /cm−1
re /10−8 cm 1 Σ+ 1Π 0.
1,487.3
11.8
1.33 9,405.6
1,144.2
8.4
1.46 Note that the electronic energy T e is the energy from the minimum of one curve to the minimum of the other;
this is not equal to the vibrational origin of the 0 − 0 band.
(a) Construct a Deslandres table of the vibrational band origins of the 1 Π − 1 Σ+ system, for v�� = 0 − 3 and
v� = 0 − 5. Which of these vibrational bands would you expect to be the most intense when the system is
observed in absorption? Comment on the relative intensities that you would expect for the other bands
in your table.
(b) In the rotational structure of the individual vibrational bands in this system, what branches would you
expect to observe? In which branch would you expect to observe a band head? Identify the J � – J ��
transition that will give rise to a line at the band head and the distance in cm−1 from the band head to the
vibrational band origin.
(c) What would you guess about the MO conﬁgurations corresponding to these two states? (Hint: Note that
BeO is isoelectronic with C2 , so that the MOs may be expected to be somewhat similar, except that the
gu property will be lost, and the orbitals will be distorted toward the higher nuclear charge of the O
atom.) Would you suspect the presence of any other excited electronic states below the 1 Π state? If so,
what would its term symbol be?
3. J. I. Steinfeld, pp. 1934, #3.
The following bands are observed in the second positive system of nitrogen (units are reciprocal centimeters
corrected to vacuum):
35,522
35,453
33,852
33,751
33,583
32,207
32,076
31,878
31,643
30,590
30,438
30,212 29,940
29,654
29,010
28,819
28,559
28,267
27,949
27,451
27,226
26,942
26,621
26,274 25,913
25,669
25,354
25,003
24,627
24,414
24,137
23,800
23,414
23,016 5.76 Problem Set #3 Spring, 1987 page 3 ��
�
Arrange these in a Deslandres table, and ﬁnd values for ω�� , ωe xe , ω� , and ωe xe . (Important Suggestion:
e
e Look at the pattern of bands ﬁrst, before doing anything else. Do any natural groupings seem to suggest
themselves? It may help to draw a “stick spectrum” of the band origins, to scale, in order to pick out these
patterns. Remember that bands having the same Δv fall along diagonals on the Deslandres table.)
Is there any suggestion of a cubic term in (v + 1/2) in the vibrational energy level spacings of either electronic
�
�3
state? If so, derive an expression for the third diﬀerence, Δ3Gv+1/2 , including terms in ωe ye v + 1 in Gv+1/2
2
and estimate ωe ye .
4. J. I. Steinfeld, p. 195, #6. Draw two Morse curves deﬁned by the following constants: ��
T e = 0 cm−1 �
T e = 10, 000 cm−1 D�� = 10, 000 cm−1
e D� = 5, 000 cm−1
e R�� = 1.44 × 10−8 cm−1
e R� = 1.54 × 10−8 cm−1
e ω�� = 582 cm−1
e ω� = 308 cm−1
e and determine the two strongest transitions originating from v� = 19. Use a reduced mass of µ = 6.857 amu.
Plot V � (R) − V �� (R) vs. R. Use this curve to determine:
(a) The long and short wavelength limits of all boundbound transitions in this system which possess signif
icant intensity;
(b) The long and short wavelength limits of strong bands from v� = 19;
(c) Plot the Rvalue(s) sampled vs. transition energy for the progression of bands (v� = 19, v�� ) for v�� = 0
through the maximum v�� level that can be reached via nonnegligible FranckCondon factor from v� =
19.
(d) The wavelength region(s) in which erratic intensity variations occur. Which v� levels participate in such
transitions? Why? 5.76 Problem Set #3 Spring, 1987 page 4 5. Eﬀective Hamiltonian Matrices.
(a) Set up the Hamiltonian,
H = HROT + HSPIN−ORBIT
for the 9 basis functions: 3Π 3 Σ+ Λ
1
−1
1
−1
1
−1
0
0
0 S
1
1
1
1
1
1
1
1
1 Σ
1
−1
0
0
−1
1
1
0
−1 Ω 2
−2
1 −1
+0
−0
1
0
−1 �
�3 Π � v � �2Π
�
�3 Π � v � � −2 Π
�
�3 Π � v �
�1Π
�
�3 Π � v �
� −1 Π
�
�3 Π � v �
�0Π
�
�3 Π � v �
� −0 Π
�
�3 Σ+ � v �
�1 Σ
�
�3 Σ+ � v �
�0 Σ
�
�3 Σ+ � v � .
� −1 Σ Let
α ≡ �Λ = 1�AL+ �Λ = 0�
β ≡ �Λ = 1�L+ �Λ = 0�
and use
�1H2� = (−1)2 J +S 1 +S 2 +σ1 +σ2 �−1H − 2�
where σ = 1 for Σ− states and 0 for all other states, to ensure phase consistency for
�Λ = 1HΛ = 0� and �Λ = −1HΛ = 0�
matrix elements.
(b) Construct the e/ f parity basis using the following phase deﬁnitions
σv v, nΛσ S Σ, Ω JM � = (−1) J −2Σ+S +σ v, n − Λσ S − Σ, −Ω JM �
elevels σv ψ = +(−1) J ψ flevels σv ψ = −(−1) J ψ. (c) Factor the 9 × 9 Hamiltonian into a 5 × 5 matrix and a 4 × 4 matrix using the e/ f basis functions.
�
��
�
�
�
(d) Obtain the centrifugal distortion correction terms for the 3 Π0 H3 Π0 , 3 Π1 H3 Π1 , and 3 Π1 H3 Π0
e matrix elements.
DΠ ≡ − �
�2
� vΠ  Bv�
Π
vΠ� 0
0
E Πv − E Π �
v . e e 5.76 Problem Set #3 Spring, 1987 (e) Obtain the correction terms for the eﬀect of remote 3 Σ+ levels on 3 Π for the
�
�
3 Π H3 Π
matrix elements. 1
1 page 5 � � 3 Π H3 Π 0
0
e and f and e and f �
o≡ �
v�
Σ �
��2
1
α vΠ v�
2
Σ
0 − E0
EΠv
Σv�
� p≡4 � 1
2 αβ � v Π v �
Σ ��
��
vΠ  Bv�
Σ 0
0
EΠv − EΣv�
��
��2
� β vΠ  Bv�
Σ
v�
Σ q≡2 v�
Σ 0
0
EΠv − EΣv� Express the diagonal contributions to the Λ–doubling of the Ω = 0 and 1 3 Π substates in terms of the o,
p, and q–parameters. ...
View
Full
Document
This note was uploaded on 11/28/2011 for the course CHEM 5.74 taught by Professor Robertfield during the Spring '04 term at MIT.
 Spring '04
 RobertField
 Mole

Click to edit the document details