# Exam 3 - V1{WM EXAM 3 MATH 2153 SECTION 2 FALL 2010...

This preview shows pages 1–5. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: V1 {WM/ EXAM 3 MATH 2153 SECTION 2, FALL 2010 INSTRUCTOR: WEIPING LI Print Name and Student # SHOW WORK FOR CREDIT 1!!_ SHOW WORK FOR CREDIT 2!! (l) (10pts) Find the radius of convergence arid interval of convergence of the series 0° 3"(:l:+4)” «a ‘ n+1 ml [ivvq 2,91%). _ J7 yqjh'o 1795i— h'hx J I”! 5" (#4)" I J." = =Iim 51x+4| r—v—h: =3IX+44 < l R 5 h'Pm ’ J— -—‘—<x+4<"‘ ’4”\$<X"4+5 ’ 3 ‘2? 0° 5"@'4+"L " be ’ A“; 1L Jane when x='4+§, “4: (75’ 5&5 “9'38 - When x z'4 — .L 9° 5"(-—4 —§+¢)“ _ “A "i gmwr J 19 Ahéwm‘fn s FEE—Mm -—,,2;Uu: je/Wg/ Ham? of Omvergénce L1 4—3; ’41? (2) (10pts) If 233:0 0,3" is conver ent, does it follow that the following series are convergent ? (a) Zf=o(—1)"Cn BS Theme)" 3, H— musf CKWV‘E/Yje fa: 4,1" [9457'- Yes. 194le ASCOWe’q-f - 3 < x < 5, I" Vﬁl'cwlal , H— Crn wage; Wk“ x t ‘2 . I+ Ja—EJ Mo‘l‘ 1’16“ch THAT ‘ch(»4_)h is necessaril/ _ (b) 21:10 Gn(‘4)n New Him. WEIFING LI (3) (12pts) All power series must have general terms for full credits. (a) Use differentiation to ﬁnd a power series representation for f (2:) = What is the radius of convergence ? 9° 2 a “A”:an =t+x+x+x+_,, r’x ":0 Take AM;VJI‘V‘€ a" loo-H1 Sudes 3 '1’“ =fHKM’I=V+ZX+BX+4X+ U—x)‘ h: H I hm (“+I)X I'm = )X‘ <t ) “ﬂog h x“ new (b) Use part (a) to ﬁnd a power series for ﬂat) = ‘ ' yer/oath a om T0103 42 jd-o n'Z, a 3H 2 . _ z +3-2X +4'5X+f‘4)<+ ' (I'X)5 hsz Dc ’2 . a .5’ 1 : ~ mum) " ;,+§.:X+£:x+—gx 5 2.. X .2. 2' (PX) h=2 Z (c) Use part (b) to ﬁnd a power series for f(:r) = Z ' 0c 5 ulna H z. 5.2 5 4-3 4 5'4 I “’1’”: )X :X+"2*’<+.>_"*2“ 5 . (.I'X) “=2 2 (4) (Spts) Use series to evaluate the limit a: — tan-1 :5 lim 3 _ :r—bO (E , 7 +" 53+,5i- 5—+ RmX : X'— 3 5 7 *' x5 X5 X7- _ X :. —' —«—~ + —— X t” 5 r 7 >4 ‘ X—fmax ' [rm (J’FL:+:<:#*UV> L“ 3 h 5 5’ 7 X‘>O X “'70 a ,L CALCULUS III 3 (5) (10pts) All power series must have general terms for full credits. (a) Use a Maclaurin series to obtain the Maclaurin series for f (m) = cos(:c3). cos-t: §('l)m t2" :I—j:+:’§—q— [4:0 (2“)! 2'" ()0 2n H 6" JC‘XB 6050(3) = Xe)" (x3 ‘ ZN) x pup (2n)! ha, (2 h) I, 5 «a r» I —- -+ 22: 'P ' ’ £17 : dy/‘H- —— 2t %=2f—IZ dx 4X41: 25’” , J‘ y- : 2t d+ ’— dx‘ (IX 4" ix/d-(y A 2+: 2(2t—/2.)—2 2t : ﬁ( 24:42) :_ (at—Ia)‘ “TC—7;— ztw/z ~24 4 WEIPING LI (7) (lOpts) Find the sum of the series 411. (a) 230:0(“Dngrf M, y. M " _ 4 a: («1) x4” _; Z CHM“) : 6 X h=o 14:0 ‘4! We“ T O (b) 211:0 my! Zn+1 i k’v (2H,)! v (8) (lOpts) Find the area of the region that lies inside 7" = 2 cos 9 curve and outside 7" = 1 curve in polar coordinates. " 2 Few! Hag When/Seaway! fond—5 +3 55(— (023,19 I :" Yc 49. A Z a e) Yr—2.Cps§= Y—"—| (359335 - .11. I 7T/3 1 9 ’ i a . 7r/5 Z I Z Arms (lease) —: )49 =;( (4&58'!) 49 .2 T, W ._ /3 3 l cg I r/s ._ :zj 2-()+CD\$26’)'I46':;(6'+S”‘29) = £4» E 11/} 3.75 3 z (9) (10pts) Find the distance (arc-length) traveled by a particle with position (x, y) = (sin2 16, cos2 t), OStSn‘. L: f“ )ﬂ dx: xii) d1,— =15’Ht6’os’t «it I O :’ :2 'Zarst Slln't (HT ' =» ﬂ 2 a '2- L alt Co\$f<0 j f4 5;...i-a75—f + 4 5714150751” \‘M Zh‘ \- V o Tr Tye J 7" , T (If \/——-—’-’J . : .‘ +§ 5'“ :Zﬁj {Smtcﬂt’ CH, “test- W/ 5 ° 2 CALCULUS III 5 (10) (lOpts) Find the points on the parametric curvem = 10 — t2, y = t3 —— 1215 where the tangent is horizontal or vertical. \ :ézé‘ "' Stz— [2 :7. DJ “MCI T = ——zt D, 5tz_'2=0 I t=i2‘ ix. ;_2.(-_t2)4—_O ! f*2._ x=é,)’.—.—(é. f=~2, X=6,3=lé. I (6) Me WMLS W;+L, “bnjed‘ ﬁmmJQ/I' JC‘O X=.IO, 7:0. ((0, 0) is ﬂu; fviwf th‘H/p M+l'(ap gﬁf;wn+4‘ (11) (Bonus lOpts) (a) Show that the area of the surface generated by rotating the polar curve 1' = f(9), a g 6 S b about the polar axis is b S =/ 27”” sin 6dr? + (gﬁdﬁ. . (b) Use (a) to ﬁnd the surface area generated by rotating 7‘2 = cos 26 about the polar axis. b 2. z, __ ’- + y'L (a) BMW”), 3: Sazvry C‘s-W) cm I> ‘j 2n Ysine ~W‘ (“9, a Y: C0529 jOeS-‘ﬂwmﬁh Hm role 4* 65526 3;. 0 ’ 29.: 9.: E. 11L ' The W {5 s WIMJ‘Wic % 4, 09“] “eds “I'D ﬁt: 991 W -wrfa_fe_ +08: :1 f. ’2- .‘4—1 :— I £12.. ﬂaw - W210 Y, 00326174; 2Y d9 2.81428 (49) _ r2 - 66523 ' . - DZ 3 3 2 I ZV-Ma529- ""‘9‘/£osze« + 912—. 4e D M; ‘ 60529 77/4 'W 2 47% Jags-sine-/“’“9+""229 do =47?! smede=4r‘("559) a I O O “NO—4:2) ...
View Full Document

## This note was uploaded on 11/28/2011 for the course CALC 2153 taught by Professor Staff during the Fall '11 term at Oklahoma State.

### Page1 / 5

Exam 3 - V1{WM EXAM 3 MATH 2153 SECTION 2 FALL 2010...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online