{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

12%20-%20Differentiation

# 12%20-%20Differentiation - PROBLEMS(1 12 DIFFERENTIATION 1...

This preview shows pages 1–4. Sign up to view the full content.

PROBLEMS 12 - DIFFERENTIATION Page 1 ( 1 ) If f ( x ) = x sin x 1 for x 0 and f ( 0 ) = 0, prove that f is continuous but not differentiable at 0. ( 2 ) Find derivatives of the following functions using the definition of a derivative. ( i ) 1 x 1 x + - ( ii ) x 3 a ( iii ) sin 2 x ( iv ) x sin x [ Ans: ( i ) 2 ) 1 x ( 2 + , ( ii ) 3 x 3 a log a, ( iii ) 2x cos 2 x ( iv ) x cos x + sin x ] ( 3 ) If f ( x ) = x 1 sin x 2 , x 0 and f ( 0 ) = 0, prove that f ’ ( 0 ) = 0. ( 4 ) If f ( x ) = e x - 1, x 0 and f ( x ) = l sin x l , x < 0, is f continuous at 0 ? Is it differentiable at 0 ? [ Ans: continuous, not differentiable ] Find derivatives with respect to x of the following functions: ( 5 ) x log x sin x 2 + ) x log ( x sin x x sin x log 2x x cos x log x : Ans 2 2 - ( 6 ) x log x e 3 [ ] ) 3 log x 1 ( 3 : Ans x + ( 7 ) x 2 3 x sin x [ Ans: 3 x ( log 3 . x 2 sin x + 2x sin x + x 2 cos x ) ] ( 8 ) ) x ( log n n a a log x 1 : Ans ( 9 ) x log e x ) x log ( x ) 1 x log x ( e : Ans 2 x - ( 10 ) log [ log ( log x ) ] ) x log ( log x log x 1 : Ans

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
PROBLEMS 12 - DIFFERENTIATION Page 2 Find derivatives with respect to x of the following functions: ( 11 ) log ( x + 2 2 a x + ) + a x 1 : Ans 2 2 ( 12 ) x 1 x 1 + - + ) x 1 ( ) x 1 ( 1 : Ans 2 3 2 1 - - ( 13 ) sin [ log l cos ( e x + x 2 ) l ] [ Ans: - ( e x + 2x ) tan ( e x + x 2 ) cos [ log l cos ( e x + x 2 ) l ] ( 14 ) sin [ cos { sin ( e x + 1 ) l ] [ Ans: - e x cos [ cos ( sin ( e x + 1 ) ) ] . sin [ sin ( e x + 1 ) ] . cos ( e x + 1 ) ] ( 15 ) l l x sin log e [ Ans: cos x if sin x > 0, - cos x if sin x < 0 ] ( 16 ) x sin e 2 x 2 tan + ) x 3 tan 2 2x sin ( x 2 tan e : Ans ( 17 ) log l sin ( tan x 2 ) l [ Ans: 2x cot ( tan x 2 ) sec 2 x 2 ] ( 18 ) , 2x sin 1 - 0 < x < 2 π < < + < < π π π π = 4 x at able differenti not , 2 x 4 for x sin x cos , 4 x 0 for x cos x sin : Ans - - ( 19 ) a x sin 1 - , 0 < l x l < l a l < > 0 a for x a 1 0, a for x a 1 : Ans 2 2 2 2 - - -
PROBLEMS 12 - DIFFERENTIATION Page 3 Find derivatives with respect to x of the following functions: ( 20 ) x 1 2x sin 2 1 - - , l x l < 1 < = 2 1 x at able differenti not , 2 1 x for , x 1 2 1 , 2 1 2 1 1, x for , x 1 2 : Ans 2 2 l l l l - - - - - ( 21 ) ) 3x 4x ( cos 3 1 - - < = 2 1 x for able differenti not 1 , 2 1 2 1 1, x for x 1 3 , 2 1 x for x 1 3 : Ans 2 2 l l l l - - - - - ( 22 ) 1 2 2x 1 sec 1 - - , 0 < l x l < 1 and l x l 2 1 < < < < 2 1 x and 0 x 1 for x 1 2 2 1 x and 1 x 0 for x 1 2 : Ans 2 2 - - - - - ( 23 ) x sin 1 x cos tan 1 - -

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 11

12%20-%20Differentiation - PROBLEMS(1 12 DIFFERENTIATION 1...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online