Lecture-Fourier Transform

Lecture-Fourier Transform - EE4780 2D Fourier Transform...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
EE 4780 2D Fourier Transform
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Bahadir K. Gunturk 2 Fourier Transform What is ahead? 1D Fourier Transform of continuous signals 2D Fourier Transform of continuous signals 2D Fourier Transform of discrete signals 2D Discrete Fourier Transform (DFT)
Background image of page 2
Bahadir K. Gunturk 3 Fourier Transform: Concept A signal can be represented as a weighted sum of sinusoids. Fourier Transform is a change of basis, where the basis functions consist of sines and cosines (complex exponentials).
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Bahadir K. Gunturk 4 Fourier Transform Cosine/sine signals are easy to define and interpret. However, it turns out that the analysis and manipulation of sinusoidal signals is greatly simplified by dealing with related signals called complex exponential signals . A complex number has real and imaginary parts: z = x + j*y A complex exponential signal: r*exp(j*a) =r*cos(a) + j*r*sin(a)
Background image of page 4
Bahadir K. Gunturk 5 Fourier Transform: 1D Cont. Signals Fourier Transform of a 1D continuous signal 2 ( ) ( ) j ux F u f x e dx π - -∞ = Inverse Fourier Transform 2 ( ) ( ) j ux f x F u e du -∞ = ( 29 ( 29 2 cos 2 sin 2 j ux e ux j ux - = - “Euler’s formula”
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Bahadir K. Gunturk 6 Fourier Transform: 2D Cont. Signals Fourier Transform of a 2D continuous signal Inverse Fourier Transform 2 ( ) ( , ) ( , ) j ux vy f x y F u v e dudv π ∞ ∞ + -∞ -∞ = ∫ ∫ 2 ( ) ( , ) ( , ) j ux vy F u v f x y e dxdy ∞ ∞ - + -∞ -∞ = ∫ ∫ f F F and f are two different representations of the same signal.
Background image of page 6
Bahadir K. Gunturk 7 Fourier Transform: Properties Remember the impulse function ( Dirac delta function ) definition 0 0 ( ) ( ) ( ) x x f x dx f x δ -∞ - = Fourier Transform of the impulse function ( 29 2 ( ) ( , ) ( , ) 1 j ux vy F x y x y e dxdy π ∞ ∞ - + -∞ -∞ = = ∫ ∫ ( 29 0 0 2 ( ) 2 ( ) 0 0 0 0 ( , ) ( , ) j ux vy j ux vy F x x y y x x y y e dxdy e ∞ ∞ - + - + -∞ -∞ - - = - - = ∫ ∫
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Bahadir K. Gunturk 8 Fourier Transform: Properties Fourier Transform of 1 ( 29 2 ( ) 1 ( , ) j ux vy F e dxdy u v π δ ∞ ∞ - + -∞ -∞ = = ∫ ∫ ( 29 1 2 ( ) 2 (0 0) ( , ) ( , ) 1 j ux vy j x v F u v u v e dudv e ∞ ∞ - + + -∞ -∞ = = = ∫ ∫ Take the inverse Fourier Transform of the impulse function
Background image of page 8
Bahadir K. Gunturk
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 11/28/2011 for the course EE 4780 taught by Professor Staff during the Spring '08 term at LSU.

Page1 / 38

Lecture-Fourier Transform - EE4780 2D Fourier Transform...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online