{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# Solution_2 - MA 1505 Mathematics I Tutorial 2 Solutions 1(a...

This preview shows pages 1–2. Sign up to view the full content.

MA 1505 Mathematics I Tutorial 2 Solutions 1. (a) lim x π/ 2 1 - sin x 1 + cos 2 x = lim x π/ 2 - cos x - 2 sin 2 x = lim x π/ 2 sin x - 4 cos 2 x = 1 4 . (b) lim x 0 ln(cos ax ) ln(cos bx ) = lim x 0 - a sin ax cos ax - b sin bx cos bx = lim x 0 a sin ax cos bx b sin bx cos ax = a 2 b 2 . (c) lim x →∞ x tan 1 x = lim x →∞ tan( x - 1 ) x - 1 = lim x →∞ - x - 2 sec 2 ( x - 1 ) - x - 2 = lim x →∞ cos - 2 ( x - 1 ) = 1. (d) lim x 0+ x a ln x = lim x 0+ ln x x - a = lim x 0+ 1 x - ax - a - 1 = lim x 0+ x a - a = 0 . (e) lim x 1 ln x 1 1 - x = lim x 1 ln x 1 - x = lim x 1 1 x - 1 = - 1. So lim x 1 x 1 1 - x = e - 1 . (f) Using (1d) we have lim x 0+ ln x sin x = lim x 0+ sin x ln x = lim x 0+ sin x x · x ln x = lim x 0+ sin x x lim x 0+ x ln x = 0 . So lim x 0+ x sin x = e 0 = 1. (g) lim x 0 ln " sin x x 1 x 2 # = lim x 0 ln( sin x x ) x 2 = lim x 0 ( x sin x ) · x cos x - sin x x 2 2 x = 1 2 lim x 0 x sin x lim x 0 x cos x - sin x x 3 = 1 2 lim x 0 cos x - x sin x - cos x 3 x 2 = - 1 6 lim x 0 sin x x = - 1 6 .

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}