class03_19_20

class03_19_20 - 1.017/1.010 Class 19 Analysis of Variance...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1.017/1.010 Class 19 Analysis of Variance Concepts and Definitions Objective: Identify factors responsible for variability in observed data Specify one or more factors that could account for variability (e.g. location, time, etc.). Each factor is associated with a particular set of populations or treatments (e.g. particular sampling stations, sampling days, etc.). One-way analysis of variance (ANOVA) considers only a single factor. Suppose a random sample [ x i 1 , x i 2 , ..., x iJ ] is obtained for treatment i . There are i =1,..., I treatments (e.g. each treatment may correspond to a different sampling location). Arrange data in a table/array -- rows are treatments, columns are replicates: [ x 11 , x 12 , ..., x 1 J ] [ x 21 , x 22 , ..., x 2 J ] . . [ x I 1 , x I 2 , ..., x IJ ] Here we assume each treatment has same number of replicates J . The ANOVA procedure may be generalized to allow different number of replicates for each treatment. Each random sample has a CDF F xi ( x i ). The different F xi ( x i ) are assumed identical except for their means, which may differ. Classical ANOVA also assumes that all data are normally distributed....
View Full Document

Page1 / 5

class03_19_20 - 1.017/1.010 Class 19 Analysis of Variance...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online