This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 12 CONTROL SYSTEMS – LOOPSHAPING 12
12.1 94 CONTROL SYSTEMS – LOOPSHAPING
Introduction This section formalizes the notion of loopshaping for linear control system design. The
loopshaping approach is inherently twofold. First, we shape the openloop transfer function
(or matrix) P (s)C (s), to meet performance and robustness speciﬁcations. Once this is done,
then the compensator must be computed, from from knowing the nominal product P (s)C (s),
and the nominal plant P (s).
Most of the analysis here is given for singleinput, singleoutput systems, but the link to
multivariable control is not too diﬃcult. In particular, absolute values of transfer functions
are replaced with the maximum singular values of transfer matrices. Design based on singular
values is the idea of L2 control, or linear quadratic Gaussian (LQG) control and the loop
transfer recovery (LTR). 12.2 Roots of Stability – Nyquist Criterion We consider the SISO feedback system with reference trajectory r(s) and plant output y (s),
as given previously. The tracking error signal is deﬁned as e(s) = r(s) − y (s), thus forming
the negative feedback loop. The sensitivity function is written as
S (s) = 1
e(s)
=
,
r(s)
1 + P (s)C (s) where P (s) represents the plant transfer function, and C (s) the compensator. The closedloop characteristic equation, whose roots are the poles of the closedloop system, is 1 +
P (s)C (s) = 0, equivalent to P (s)C (s) + P (s)C (s) = 0, where the underline and overline
denote the denominator and numerator, respectively. The Nyquist criterion allows us to
assess the stability properties of a feedback system based on P (s)C (s) only. This method
for design involves plotting the complex loci of P (s)C (s) for the range s = jω , ω = [−∞, ∞].
Remarkably, there is no explicit calculation of the closedloop poles, and in this sense the
design approach is quite diﬀerent from the rootlocus method (see Ogata, also the rlocus()
command in MATLAB).
12.2.1 Mapping Theorem To give some understanding of the Nyquist plot, we begin by imposing a reasonable assumption from the outset: The number of poles in P (s)C (s) exceeds the number of zeros. It is
a reasonable constraint because otherwise the loop transfer function could pass signals with
inﬁnitely high frequency. In the case of a PID controller (two zeros) and a secondorder
zeroless plant, this constraint can be easily met by adding a highfrequency rolloﬀ to the
compensator, the equivalent of lowpass ﬁltering the error signal. 12 CONTROL SYSTEMS – LOOPSHAPING 95 Now let F (s) = 1 + P (s)C (s) (the denominator of S (s)). The heart of the Nyquist analysis
is the mapping theorem, which answers the following question: How do paths in the complex
splane map into paths in the complex F plane? We limit ourselves to closed, clockwise(CW)
paths in the splane, and the powerful result of the mapping theorem is
Every zero of F (s) that is enclosed by a path in the splane generates exactly one CW
encirclement of the origin in the F (s)plane. Conversely, every pole of F (s) that is enclosed
by a path in the splane generates exactly one CCW encirclement of the origin in the F (s)
plane. Since CW and CCW encirclements of the origin may cancel, the relation is often
written Z − P = C W .
So it will be possible to relate poles and zeros in the F (s)plane to encirclements of the
origin in the splane. Since we get to design the path in the splane, the trick is to enclose
all unstable poles, i.e., the path encloses the entire righthalf plane, moving up the imaginary
axis, and then proceeding to the right at an arbitrarily large radius, back to the negative
imaginary axis.
Since the zeros of F (s) are in fact the poles of the closedloop transfer function, e.g., S (s),
stability requires that there are no zeros of F (s) in the righthalf splane. This leads to a
slightly shorter form of the above relation:
P = C CW.
In words, stability requires that the number of unstable poles in F (s) is equal to the number
of CCW encirclements of the origin, as s sweeps around the entire righthalf splane.
12.2.2 Nyquist Criterion The Nyquist criterion now follows from one translation. Namely, encirclements of the origin
by F (s) are equivalent to encirclements of the point (−1 + 0j ) by F (s) − 1, or P (s)C (s).
Then the stability criterion can be cast in terms of the unstable poles of P (s)C (s), instead
of those of F (s):
P = C CW ←→ closedloop stability
This is in fact the complete Nyquist criterion for stability: It is a necessary and suﬃcient
condition that the number of unstable poles in the loop transfer function P (s)C (s) must be
matched by an equal number of CCW encirclements of the critical point (−1 + 0j ).
There are several details to keep in mind when making Nyquist plots:
• From the formula, if neither the plant nor the controller have unstable poles, then the
loci of P (s)C (s) must not encircle the critical point at all, for closedloop stability. If
the plant and the controller comprise q unstable poles, then the loci of P (s)C (s) must
encircle the critical point q times in the CCW dirction. 12 CONTROL SYSTEMS – LOOPSHAPING 96 • Because the path taken in the splane includes negative frequencies (i.e., the nega
tive imaginary axis), the loci of P (s)C (s) occur as complex conjugates – the plot is
symmetric about the real axis.
• The requirement that the number of poles in P (s)C (s) exceeds the number of zeros
means that at high frequencies, P (s)C (s) always decays such that the loci go to the
origin.
• For the multivariable (MIMO) case, the procedure of looking at individual Nyquist
plots for each element of a transfer matrix is unreliable and outdated. Referring to
the multivariable deﬁnition of S (s), we should count the encirclements for the function
[det(I + P (s)C (s)) − 1] instead of P (s)C (s). The use of gain and phase margin in
design is similar to the SISO case.
12.2.3 Robustness on the Nyquist Plot The question of robustness in the presence of modelling errors is central to control system
design. There are two natural measures of robustness for the Nyquist plot, each having
a very clear graphical representation. The loci need to stay away from the critical point
P (s)C (s) = −1 = 1 180◦ , and how close the loci come to it can be expressed in terms of
magnitude and angle:
• When the angle of P (s)C (s) is −180◦ , the magnitude P (s)C (s) should not be near
one.
• When the magnitude P (s)C (s) = 1, its angle should not be −180◦ .
These notions lead to deﬁnition of the gain margin kg and phase margin γ for a design. As
the ﬁgure shows, the deﬁnition of kg is diﬀerent for stable and unstable P (s)C (s). Rules
of thumb are as follows. For a stable plant, we desire kg ≥ 2 and γ ≥ 30◦ ; for an unstable
plant, kg ≤ 0.5 and γ ≥ 30◦ . As deﬁned, these conditions will maintain stability even if
the gain is increased by a factor of two for the stable openloop system, or decreased by a
factor of two for the unstable OL system. In both cases, the phase angle can be in error
by thirty degrees without losing stability. Note that the system behavior in the closedloop, while technically stable through these perturbations, might be very poor from the
performance point of view. The following two sections outline how to manage robustness
and performance simultaneously using the Nyquist plot. 12.3 Design for Nominal Performance Performance requirements of a feedback controller, using the nominal plant model, can be
cast in terms of the Nyquist plot. Since the sensitivity function maps reference input r(s)
to tracking error e(s), we know that S (s) should be small at low frequencies. For example, 12 CONTROL SYSTEMS – LOOPSHAPING 97
P(s)C(s) Im(s) 1/kg X Im(s)
1/kg
Re(s) J X Re(s)
J P(s)C(s)
Stable P(s)C(s) Unstable P(s)C(s) if onepercent tracking is to be maintained for all frequencies below ω = λ, then S (s) <
0.01, ∀ω < λ. This can be formalized by writing
W1 (s)S (s) < 1,
where W1 (s) is a stable weighting function of frequency. To force S (s) to be small at low
ω , W1 (s) should be large in the same range. The requirement W1 (s)S (s) < 1 is equivalent
to W1 (s) < 1 + P (s)C (s), and this latter condition can be interpreted as: The loci of
P (s)C (s) must stay outside the disk of radius W1 (s), which is to be centered on the critical
point (−1+0j ). The disk is to be quite large, possibly inﬁnitely large, at the lower frequencies. 12.4 Design for Robustness It is ubiquitous that models of plants degrade with increasing frequency. For example, the
DC gain and slow, lightlydamped modes or zeros are easy to observe, but higherfrequency
components in the response may be hard to capture or even to excite repeatably. Higherfrequency behavior may have more nonlinear properties as well.
The eﬀects of modeling uncertainty can be considered to enter the nominal feedback system
as a disturbance at the plant output, dy . One of the most useful descriptions of model
uncertainty is the multiplicative uncertainty:
˜
P (s) = (1 + Δ(s)W2 (s))P (s).
Here, P (s) represents the nominal plant model used in the design of the control loop,
˜
and P (s) is the actual, perturbed plant. The perturbation is of the multiplicative type,
Δ(s)W2 (s)P (s), where Δ(s) is an unknown but stable function of frequency for which 12 CONTROL SYSTEMS – LOOPSHAPING 98 Δ(s) ≤ 1. The weighting function W2 (s) scales Δ(s) with frequency; W2 (s) should be
growing with increasing frequency, since the uncertainty grows. However, W2 (s) should not
grow any faster than necessary, since it will turn out to be at the cost of nominal performance.
˜
In the scalar case, the weight can be estimated as follows: since P /P − 1 = ΔW2 , it will
˜
suﬃce to let P /P − 1 < W2 .
˜
Example: Let P = k /(s − 1), where k is in the range 2–5. We need to create a nominal
model P = k0 /(s − 1), augmented with the smallest possible value of W2 , which will not vary
with frequency in this case. Two equations can be written using the above estimate, for the
two extreme values of k , yielding k0 = 7/2, and W2 = 3/7. In particular, k0 ± W2 = [2, 5]
For constructing the Nyquist plot, we observe that
˜
P (s)C (s) = (1 + Δ(s)W2 (s))P (s)C (s). The path of the perturbed plant could be anywhere
on a disk of radius W2 (s)P (s)C (s), centered on the nominal loci P (s)C (s). The robustness
condition is that this disk should not intersect the critical point. This can be written as
1 + P C  > W2 P C  ←→
W2 P C 
1 >
←→
1 + P C 
1 > W2 T ,
where T is the complementary sensitivity function. The last inequality is thus a condition
for robust stability in the presence of multiplicative uncertainty parameterized with W2 . 12.5 Robust Performance The condition for good performance with plant uncertainty is a combination of the above two
conditions. Graphically, the disk at the critical point, with radius W1 , should not intersect
the disk of radius W2 P C , centered on the nominal locus P C . This is met if
W1 S  + W2 T  < 1.
The robust performance requirement is related to the magnitude P C  at diﬀerent frequen
cies, as follows:
W1 /P C , since P C  is large. This leads directly to the
1. At low frequency, W1 S 
performance condition P C  > W1  in this range.
2. At high frequency, W2 T 
W2 P C , since P C  is small. We must therefore have
P C  < 1/W2 , for robustness. 12 CONTROL SYSTEMS – LOOPSHAPING 99 Im(s) W1
X Re(s) P(s)C(s)
W2PC 12.6 Implications of Bode’s Integral The loop transfer function P C cannot roll oﬀ too rapidly in the crossover region, and this
limits how ”dramatic” can be the loop shapes that we create to achieve robustness, nominal
performance, or both. The simple reason is that a steep slope induces a large phase loss,
which in turn degrades the phase margin. To see this requires a short foray into Bode’s
integral. For a transfer function H (s), the crucial relation is
1�∞ d
[log(H (jω )) · log(coth(ν /2))] dν,
H (jω0 ) =
π −∞ dν
where ν = log(ω/ω0 ), and coth() is the hyperbolic cotangent. The integral is hence taken
over the log of a frequency normalized with ω0 . It is not hard to see how the integral controls
the angle: the function log(coth(ν /2)) is nonzero only near ν = 0, implying that the angle
depends only on the local slope d(log H )/dν . Thus, if the slope is large, the angle is large.
n
Example: Suppose H (s) = ω0 /sn , i.e., it is a simple function with n poles at the origin, and
n
no zeros; ω0 is a ﬁxed constant. It follows that H  = ω0 /ω n , and log H  = −n log(ω/ω0 ),
so that d(log H )/dν = −n. Then we have just H=− n� ∞
nπ
log(coth(ν /2))dν = − .
π −∞
2 This integral is easy to look up or compute. Each pole at the origin induces 90◦ of phase
loss. In the general case, each pole not at the origin induces 90◦ of phase loss for frequencies
above the pole. Each zero at the origin adds 90◦ phase lead, while zeros not at the origin add
90◦ of phase lead for frequencies above the zero. In the immediate neighborhood of these
poles and zeros, the phase may vary signiﬁcantly with frequency.
The Nyquist loci are clearly susceptible to these variations is phase, and the phase margin
can be easily lost if the slope of P C at crossover (where the magnitude is unity) is too steep. 12 CONTROL SYSTEMS – LOOPSHAPING 100 The slope can safely be ﬁrstorder (−20dB /decade, equivalent to a single pole), and may be
secondorder (−40dB /decade) if an adequate phase angle can be maintained near crossover. 12.7 The Recipe for Loopshaping In the above analysis, we have extensively described what the open loop transfer function P C
should look like, to meet robustness and performance speciﬁcations. We have said very little
about how to get the compensator C , the critical component. For clarity, let the designed
loop transfer function be renamed, L = P C . It suﬃces to just pick
C = L/P.
This simple step involves a plant inversion: the idea is to ﬁrst shape L as a stable transfer
function meeting the requirements of stability and robustness, and then divide through by
the plant transfer function.
• When the plant is stable and has stable zeros (minimumphase), the division can be
made directly.
• One caveat for the stableplant procedure is that lightlydamped poles or zeros should
not be canceled verbatim by the compensator, because the closedloop response will
be sensitive to any slight change in the resonant frequency. The usual procedure is to
widen the notch or the peak in the compensator, through a higher damping ratio.
• Nonminimum phase or unstable behavior in the plant can usually be handled by
performing the loopshaping for the closest stable model, and then explicitly considering
the eﬀects of adding the unstable parts.
– In the case of unstable zeros, we ﬁnd that they impose an unavoidable frequency
limit for the crossover. In general, the troublesome zeros must be faster than the
closedloop frequency response.
– In the case of unstable poles, the converse is true: The feedback system must be
faster than the corresponding frequency of the unstable mode. MIT OpenCourseWare
http://ocw.mit.edu 2.017J Design of Electromechanical Robotic Systems
Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms . ...
View
Full
Document
This note was uploaded on 11/29/2011 for the course CIVIL 1.00 taught by Professor Georgekocur during the Spring '05 term at MIT.
 Spring '05
 GeorgeKocur

Click to edit the document details